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ABSTRACT

Telescopes aiming to measure 21 cm emission from the Epoch of Reionization must toe a careful line, balancing the
need for raw sensitivity against the stringent calibration requirements for removing bright foregrounds. It is unclear
what the optimal design is for achieving both of these goals. Via a pedagogical derivation of an interferometer’s
response to the power spectrum of 21 cm reionization fluctuations, we show that even under optimistic scenarios
first-generation arrays will yield low-signal-to-noise detections, and that different compact array configurations can
substantially alter sensitivity. We explore the sensitivity gains of array configurations that yield high redundancy
in the uv-plane—configurations that have been largely ignored since the advent of self-calibration for high-
dynamic-range imaging. We first introduce a mathematical framework to generate optimal minimum-redundancy
configurations for imaging. We contrast the sensitivity of such configurations with high-redundancy configurations,
finding that high-redundancy configurations can improve power-spectrum sensitivity by more than an order of
magnitude. We explore how high-redundancy array configurations can be tuned to various angular scales, enabling
array sensitivity to be directed away from regions of the uv-plane (such as the origin) where foregrounds are brighter
and instrumental systematics are more problematic. We demonstrate that a 132 antenna deployment of the Precision
Array for Probing the Epoch of Reionization observing for 120 days in a high-redundancy configuration will, under
ideal conditions, have the requisite sensitivity to detect the power spectrum of the 21 cm signal from reionization
at a 3σ level at k < 0.25 h Mpc−1 in a bin of Δ ln k = 1. We discuss the tradeoffs of low- versus high-redundancy
configurations.
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interferometric – telescopes

1. INTRODUCTION

The Epoch of Reionization (EoR)—the rapid ionization of
the majority of the hydrogen in the universe by light from the
first stars and black holes—is the most recent phase transition in
the state of the baryons in our universe, and yet it still remains
largely unexplored. Observations of redshifted emission from
the 21 cm hyperfine transition of neutral hydrogen have the
potential to provide unrivaled detail about this epoch (Field
1958; Madau et al. 1997; Furlanetto et al. 2006). Variations in
this signal versus redshift and direction allow the reconstruction
of a three-dimensional (3D) map of the evolution of the ion-
ization state of the hydrogen. However, reaching the sensitivity
to image the structures during reionization will require an in-
strument with roughly a square kilometer of collecting area
(McQuinn et al. 2006). As a result, first-generation radio
telescopes targeting reionization either aim to measure the
global temperature change of 21 cm emission during the
EoR (a task which is not sensitivity-limited), as with the
Compact Reionization Experiment (CoRE) and the Experi-
ment to Detect the Global EOR Signature (EDGES; Bowman
& Rogers 2010), or instead aim for a statistical detec-
tion of the 21 cm fluctuations generated by reionization,
as with the Giant Metrewave Radio Telescope (GMRT; Pen
et al. 2009),3 the LOw-Frequency ARray (LOFAR; Rottgering
et al. 2006),4 the Murchison Widefield Array (MWA; Lonsdale
et al. 2009),5 and the Donald C. Backer Precision Array for

3 http://gmrt.ncra.tifr.res.in/
4 http://www.lofar.org/
5 http://www.mwatelescope.org/

Probing the Epoch of Reionization (PAPER; Parsons et al.
2010).6 A detection of the EoR by the first generation of in-
struments would establish low-frequency radio astronomy as a
powerful probe of reionization and of the high-redshift universe.

Removing foregrounds that are orders of magnitude brighter
than the signal and obtaining the requisite sensitivity are the
primary concerns that influence the design of all 21 cm instru-
ments (Parsons et al. 2010; Bowman et al. 2009; Paciga et al.
2011). Astrophysical foregrounds that interfere with the direct
detection of a 21 cm EoR signature arise primarily from galac-
tic and extragalactic synchrotron and free–free emission. With
the exception of leakage terms from Faraday rotated polarized
galactic synchrotron emission (Jelić et al. 2008; Bernardi et al.
2010), all contaminants arising from foregrounds are thought
to be spectrally smooth or faint enough not to be problematic
(Petrovic & Oh 2011). The brightness temperatures of these
foregrounds can exceed the expected ∼10 mK amplitude of the
21 cm EoR signal by up to five orders of magnitude (Zahn
et al. 2007; Santos et al. 2005). These foregrounds also serve
as a source of noise that dominates the system temperature of
radiometers in the 100–200 MHz band.

Projects aiming to detect the 21 cm EoR signal have taken a
variety of different approaches, illustrating the breadth of param-
eter space available for designing such instruments. Much of our
discussion will focus on the PAPER experiment, but our results
generalize to other arrays. PAPER employs single-dipole an-
tenna elements that are not steerable—a design that emphasizes
spatially and spectrally smooth instrumental responses to facil-
itate calibration and foreground removal (Parsons et al. 2010).

6 http://eor.berkeley.edu/
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This approach contrasts with the large-dish approach taken
by GMRT and the station beam-forming approach taken by
LOFAR and the MWA, where dipoles are added in-phase to
form more focused beams prior to correlation. PAPER’s design
choice favors elements with a single primary lobe of response
horizon-to-horizon—a choice which directly limits the collect-
ing area of each element. On the one hand, for a fixed total
collecting area, small antenna elements (such as PAPER’s) in-
crease the cost of correlation and imaging, owing to the O(N2)
scaling of the number of baselines with number of antennas N.
On the other hand, it is imperative that imperfect calibration
and sidelobes associated with station beam-forming (used by
LOFAR and MWA) not introduce spectral structure that impedes
foreground removal. The trade-off of per-station collecting area
versus primary-beam smoothness is one of the major design pa-
rameters that must be addressed by first-generation experiments
to lead into a next-generation instrument such as phase-II of the
Hydrogen Epoch of Reionization Array7 (HERA; Comm. for a
Decadal Survey of A&A: NRC 2010) and the Square Kilometer
Array8 (SKA). In all cases, first-generation experiments will be
starved for sensitivity, motivating the exploration of techniques
for improving sensitivity.

Optimizing these design parameters for future 21 cm EoR
arrays requires a careful assessment of the trade-offs between
sensitivity and facility of calibration in first-generation exper-
iments. To further this investigation, we provide in Section 2
a detailed pedagogical derivation of the sensitivity for an in-
terferometer targeting the 21 cm reionization signal. Within
this section, we relate sensitivity to the number of repeated
measurements of modes in the uv-plane, motivating sampling
redundancy as an important metric of the sensitivity perfor-
mance of an array. In Section 3, we explore the conflicting goals
of arrays aiming to characterize foregrounds and those aiming
to measure the evolving power spectrum of reionization fluc-
tuations. We then show how antenna placement can be used
to tune sensitivity relative to bright foregrounds. We evaluate
several antenna configurations to arrive at a class of configura-
tions that maximize sensitivity to the 21 cm EoR signal. Finally,
in Section 4, we discuss how our configuration studies, along
with experience with the technical challenges of foreground re-
moval and correlating many antennas, will influence the design
of future experiments targeting the 21 cm EoR signal.

2. SENSITIVITY TO THE 21 cm POWER SPECTRUM

Although derivations of the sensitivity of a radio interferom-
eter to the expected 21 cm EoR signal exist in the literature
(Morales 2005; McQuinn et al. 2006; Pen et al. 2009), we aim
to clarify the derivation and to be more precise about the approx-
imations that have been made implicitly in previous derivations.
The goals of this section are to develop a framework for com-
paring sensitivity to foregrounds that are often related in jansky
units, to highlight the effects of wide fields of view and wide
bandwidths on the approximations that are made, and to be as
clear as possible about Fourier transform normalizations while
deriving the sensitivity of an interferometric baseline to the 3D
power spectrum of 21 cm reionization.

2.1. Single-baseline Response

We begin with the basic definitions for the 3D power spec-
trum of brightness temperature fluctuations (the statistic which

7 http://reionization.org/
8 http://www.skatelescope.org/

21 cm efforts aim to measure) and for the visibility (the fun-
damental observable of an interferometer). We then calculate
the response of a single interferometric baseline to the 21 cm
brightness-temperature fluctuations arising from cosmic reion-
ization, thereby deriving the relationship between visibilities
calibrated to a jansky scale and reionization fluctuations in
k-space expressed in mK2 units. For this derivation, we adopt
a Fourier transform normalization convention that is consis-
tent with that used in theoretical models (and is standard in
cosmological work), but which differs from that used in radio
astronomy. With respect to the brightness temperature in a pixel
of the sky plane/frequency data cube, T (x), and its Fourier dual
T̃ (k), this convention yields

T̃ (k) = 1

V

∫
T (x) e−ik·xd3x

T (x) = V

(2π )3

∫
T̃ (k) eik·xd3k. (1)

Here, V refers to the volume of the observed data cube and
x is a 3D vector that indicates direction on the sky and depth
(the frequency dimension) within the field. Likewise, k is a 3D
wave-vector with projection k⊥ ≡ (kx, ky) in the plane of the
sky, and kz along the line-of-sight (frequency) direction. We
derive our response in the flat-sky approximation (as discussed
below) so that we may take x to be Cartesian.

It follows from this convention that an estimate of the power
spectrum is given by

P̂ (k) ≡ 〈|T̃ (k)|2〉 =
∫

ξ̂ (r) e−ik·rd3r, (2)

where angle brackets denote an ensemble average, r is the vector
distance between two points, and ξ̂ (r) is an estimate of the two-
point correlation function of the measured T, given by

ξ̂ (r) = 1

V

∫
T (x)T (x + r)d3x. (3)

It is important to note that the Fourier transform normalization
defined by Equation (2) is not consistent with the transformation
defining the visibility for a single baseline (Morales & Hewitt
2004); a volume factor, V, divides the integral in Equation (2),
but no observing volume appears in the denominator of the
following definition of the visibility adapted from Thompson
(1999), their Equations (2)–(21):

V (u, v,w, ν) ≡
∫

dl dm√
1 − l2 − m2

A(l, m, ν)I (l, m, ν)

× e−2πi(ul+vm+w[
√

1−l2−m2−1]), (4)

where ν is spectral frequency, l ≡ sin θx and m ≡ sin θy are (in
the small-angle approximation) angular coordinates in image
domain, (u, v,w) ≡ b/λ are the east–west, north–south, and
line-of-sight projections of baseline vector b toward a phase
center, in units of observing wavelength λ, A(l, m, ν) is a
windowing function describing the field of view and bandpass
response of an interferometer pair, and I (l, m, ν) is the specific
intensity.

It is common to neglect the (l, m)-dependence of the w-term
in the exponential—a simplification commonly referred to as
the flat-sky approximation (Clark 1999). This approximation is
valid within a radius ≈10◦ of the phase center or when phasing

2
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to a direction orthogonal to the baseline vector (so that w ≈ 0).
For many low-frequency arrays, including PAPER, wide fields
of view make this approximation invalid, and proper imaging
requires techniques such as W-projection (Cornwell et al. 2003).
However, the magnitude of the 21 cm EoR power spectrum
P21(k) is not expected to evolve significantly over k ± |k⊥| for
baselines shorter than 300 m. Hence, the linear combination
of k-modes generated by the point-spread function (PSF) of
a baseline9 is still representative of the statistical distribution
described by P21(k). We adopt the flat-sky approximation for
simplicity, but use the full area of the primary beam to estimate
sensitivity.

To relate Fourier transform conventions that differ by a factor
of integration volume, we extend the definition of the visibility in
the flat-sky approximation to include a similar Fourier transform
along the frequency axis:

Ṽ (u, v, η) ≈
∫

dldmdνA(l, m, ν)I (l, m, ν)

× e−2πi(u l+v m+η ν). (5)

This definition ignores the frequency-dependence of (u, v)
arising from the changing length of λ dividing the physical
separation of two antennas. 21 cm EoR experiments have large
relative bandwidths, with (u, v) varying by as much as 4%
over a 6 MHz bandwidth at 150 MHz. The 4% variation in the
k⊥ component of k that arises from the frequency-dependence
of (u, v) is smaller than the averaging interval used later in
Section 2.3, and approximation does not substantially affect
sampling of P21(k), nor does it change the sensitivities we
derive. Of greater concern in our examination of the frequency-
dependent sampling of the uv-plane by a single baseline is the
effect it may have on foreground removal. We will revisit this
issue briefly in Section 3, but we defer a detailed treatment of
the subject to a future paper.

Squaring both sides and using I = 2kBT/λ2, with λ being
the mean wavelength over the sub-band used in the Fourier
transform, yields

Ṽ 2(u, v, η) ≈
(

2kB

λ2

)2 ∫
dldmdνdl′dm′dν ′

× A(l, m, ν)T (l, m, ν)A(l′,m′, ν ′)T (l′,m′, ν ′)
× e−2πi[u (l−l′)+v (m−m′)+η (ν−ν ′)]. (6)

We now make the approximation that A(l, m, ν) is a top-hat win-
dowing function. Explicitly integrating A(l, m, ν) determines
the width and shape of the convolution kernel in Equation (11).
Since the width of this kernel is thereafter neglected and only
enters later to tally the number of independent wave-modes sam-
pled, the top-hat approximation should be considered purely

9 From the perspective of deriving the power-spectrum response of a single
baseline, the dominant effect of violating the flat-sky approximation is that the
fringe-pattern of the baseline (which is a sinusoid in l, m) gradually de-tunes
from a Cartesian sinusoid away from phase center. As a result, a Fourier mode
at (u, v) that is sampled by a baseline will have a PSF in k-space that is peaked
in k⊥, but which includes contributions from modes with smaller |k⊥| that
project onto the fringe pattern nearer to the horizon. The degree of peaked-ness
depends on the relative gain of the primary beam within the region where the
flat-sky approximation is valid. For nearly all of the k-modes accessible to
21 cm EoR instruments, |k| is dominated by the line-of-sight component kz. It
follows from Equations (17) and (18) that for line-of-sight scales arising from
a 6 MHz bandwidth, the k⊥ component arising from a 300 m baseline perturbs
|k| by Δ ln k � 0.5, falling within the fiducial averaging interval used in
Section 2.3. This perturbation decreases rapidly for shorter baseline lengths.

pedagogical. Drawing A(l, m, ν) into the bounds of the integral
yields

Ṽ 2(u, v, η) ≈
(

2kB

λ2

)2 ∫ (θ,θ,B)

(0,0,0)
dldmdν

∫ (θ,θ,B)

(0,0,0)
dl′dm′dν ′

× T (l, m, ν)T (l′,m′, ν ′)
× e−2πi[u(l−l′)+v(m−m′)+η(ν−ν ′)], (7)

where θ ≡ √
Ω, for primary beam field of view Ω. Changing

variables so that (lr , mr, νr ) = (l − l′,m − m′, ν − ν ′):

Ṽ 2(u, v, η) ≈
(

2kB

λ2

)2 [ ∫ (0,0,0)

(−θ,−θ,−B)
dlrdmrdνr

×
∫ (θ+lr ,θ+mr ,B+νr )

(0,0,0)
dldmdν

+
∫ (θ,θ,B)

(0,0,0)
dlrdmrdνr

∫ (θ,θ,B)

(lr ,mr ,νr )
dldmdν

]
× T (l, m, ν)T (l−lr , m−mr, ν−νr )

× e−2πi(ulr +vmr +ηνr ). (8)

Integrating over (l, m, ν) and using Equation (3) yields

Ṽ 2
21(u, v, η) ≈

(
2kB

λ2

)2

Ω B

∫ (θ,θ,B)

(−θ,−θ,−B)
dlrdmrdνr

× ξ̂21(lr , mr, νr )e−2πi(ulr +vmr +ηνr ), (9)

where B is the observing bandwidth, and where we now use
the subscript “21” to make explicit that these quantities are
derived for 21 cm emission from reionization. Using X and Y
to represent conversion factors from angle and frequency to
comoving distance, respectively, we substitute (Xlr,Xmr, Yνr )
for (rx, ry, rz) and (Xkx,Xky, Y kz) for 2π (u, v, η). The factor
of 2π follows from the cosmological Fourier convention. This
substitution then yields

Ṽ 2
21(u, v, η) ≈

(
2kB

λ2

)2Ω B

X2Y

∫ (Xθ,Xθ,YB)

(−Xθ,−Xθ,−YB)
ξ̂21(r)e−ik·rd3r,

(10)
This equation establishes the relationship between a (u, v, η)-
mode measured by an interferometer and a k-mode. Hereafter
we will use “(u, v, η)-mode” and “k-mode” interchangeably to
refer to a coherent region in Fourier space. Because the right-
hand side of Equation (10) is the Fourier transform of ξ (r) with
a top-hat window, in Fourier space it becomes the convolution
of the Fourier transform of these functions:

Ṽ 2
21(u, v, η) ≈

(
2kB

λ2

)2Ω B

X2Y

[
P̂21(k) ∗ (sinc(2Xθkx)

× sinc(2Xθky) sinc(2YBkz))
]
, (11)

where “∗” signifies convolution in k. In the more general case
this convolving kernel is not a sinc function, but the Fourier
transform of the primary beam Ã(l, m, ν). For primary beam
responses larger than 30 arcmin, the width of the kernel in
k-space is much smaller than the scales over which P21(k)
varies for the k-modes that are likely not to be dominated by
foregrounds (McQuinn et al. 2006). Thus, we drop the sinc
kernel from Equation (11), giving

Ṽ 2
21(u, v, η) ≈

(
2kB

λ2

)2 Ω B

X2Y
P̂21(k). (12)

3
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Theoretical studies often express the 21 cm signal in a dimen-
sionless manner given by Δ̂2(k) ≡ k3

2π2 P̂ (k) (using that P21(k) is
expected to be nearly isotropic; McQuinn et al. 2006), making
it useful to write Equation (12) as

Ṽ 2
21(u, v, η) ≈

(
2kB

λ2

)2 Ω B

X2Y

2π2

k3
Δ̂2

21(k). (13)

2.2. Single-baseline Sensitivity Measuring One k-mode

The next step toward estimating the sensitivity to the 21 cm
signal is to calculate the power spectrum of the thermal noise
of an instrument. Thermal fluctuations produce a white-noise
signal with rms brightness temperature TN,rms, which in practice
will be roughly equal to the sky temperature for 21 cm
instruments. The thermal noise contributes a component to the
rms amplitude of the visibility ṼN equal to

ṼN = 2kB

λ2
TN,rms Ω B. (14)

This equation can be derived from Equation (4) assuming a
white-spectrum thermal noise for I with temperature TN,rms.
We substitute ṼN for Ṽ in Equation (13) to get the noise
contribution10 to the dimensionless power, Δ2

N(k), yielding

Δ2
N(k) ≈ X2Y

k3

2π2
Ω B T 2

N,rms(u, v, η). (15)

Since there are 2Bt independent measurements of the noise
for time t, the value of TN,rms noise that should enter in
Equation (15) is not the true temperature at any given time
(which is usually called the system temperature Tsys), but rather
the error in how well Tsys can be measured (which relates
to the error in how well thermal noise can be measured and
subtracted off, and is

√
2Tsys for Gaussian random noise) or

T 2
N,rms = T 2

sys/Bt . With this substitution,

Δ2
N(k) ≈ X2Y

k3

2π2

Ω
2t

T 2
sys, (16)

where t is the integration time for sampling a particular (u, v, η)-
mode, and the factor of two in the denominator comes from the
explicit inclusion of two orthogonal polarizations to measure
the total unpolarized signal.11 This equation differs from the
derivations given in Morales (2005) and McQuinn et al. (2006)
by only this polarization factor. Note how the power-spectrum
sensitivity toward a particular k-mode is independent of band-
width, and that (Furlanetto et al. 2006)

X ≈ 1.9

(
1 + z

10

)0.2

h−1 Mpc

arcmin
(17)

10 When squaring Ṽ in Equation (13), it is important to construct an estimator
of Δ2

21(k) that is not biased by the noise power spectrum. This can be
accomplished by subtracting off a measured noise power spectrum, or more
elegantly by constructing cross-products Ṽi Ṽ

∗
j from pairs of samples i, j that

measure the same Fourier mode but have independent thermal noise. The
sensitivities that are derived here reflect the residual error that remains in an
unbiased construction of Ṽ 2.
11 As defined above, Δ2

N(k) indicates the noise left in the map after one tries to
subtract the noise power using all of the available information. It may be
defined equivalently as relating to the signal-to-noise at which the true power
spectrum, Δ2

21(k), can be measured in a k-bin: S/N = Δ2
21(k)/Δ2

N(k). This
definition assumes that Δ2

N is calculated for a real-valued sky, so that baselines
sampling positive and negative Fourier components are not counted as
independent measurements.

Y ≈ 17

(
1 + z

10

) 1
2
(

Ωmh2

0.15

)− 1
2 Mpc

MHz
, (18)

giving us (for Ωm = 0.27):

X2Y ≈ 540

(
1 + z

10

)0.9
h−3 Mpc3

sr · Hz
. (19)

Substituting for X2Y at z = 8.5 (assuming observations at
150 MHz) in Equation (16), and choosing fiducial PAPER
parameters, we have

Δ2
N(k) ≈ 2.8 × 104

[
k

0.1 h Mpc−1

]3 [
Ω

0.76 sr

] 3
2

×
[

Tsys

500 K

]2 [
120 days

tdays

] [ |u|
20

]
mK2, (20)

where we assume 120 days of observation with a baseline of
length |u| ∼ 20 that allows ∼13 minutes of integration per
day, for a total integration time of 9 × 104 s per (u, v, η)-
mode. In general, integration time per mode per day depends
strongly on baseline orientation and the latitude at which an
array is deployed. We will estimate a minimum integration
timescale here for arrays at mid-latitudes, and defer an exact,
configuration-dependent treatment until Sections 2.4 and 3. We
compute the amount of time a baseline samples a (u, v, η)-mode
per day, tper mode, as it is limited by the timescale for Earth-
rotation to move the sampling of a baseline a distance of Ω−1/2 in
the uv-plane: tper mode ≈ 1/

√
Ωω⊕|u|, where ω⊕ is the angular

speed of Earth’s rotation. The choice of 20 wavelengths as a
fiducial baseline length is arbitrary, but represents an estimate
of a minimum baseline length that is not dominated by galactic
synchrotron emission (see Section 3.2).

The cosmological 21 cm signal is typically much smaller
than the noise in a single baseline, as given by Equation (20).
This assumption is reflected in our derivation by the absence
of sample variance as a significant contribution to the errors
we compute. The globally averaged spin temperature of the
21 cm transition is 〈T21〉 = 28([1 + z]/10)1/2 mK for neutral
intergalactic medium, assuming that the spin temperature of
the 21 cm transition is much larger than the cosmic microwave
background (CMB) temperature (which will almost certainly
hold at z < 10; e.g., Furlanetto et al. 2006). For a patchy
reionization process, an estimate for the dimensionless power
spectrum of 21 cm fluctuations arising from inhomogeneities in
the ionization fraction is given by

Δ2
21cm ∼ 〈T21〉2(xH − x2

H )/ ln(kmax/kmin), (21)

where xH is the average neutral hydrogen fraction and kmin and
kmax are the wave-vectors between which most of the power
lies. Consistent with this estimate, when xH ≈ 0.5, simulations
of reionization find 10 < Δ2

21 < 100 mK2 with a flat spectrum
over 0.1 < k < 10 h Mpc−1 (McQuinn et al. 2007; Trac &
Cen 2007). Models with rarer sources tend to produce larger
ionized regions and more power than those with more abundant
sources (McQuinn et al. 2007). Comparing Equation (21)
to the sensitivity of a baseline in Equation (20) motivates
the exploration of methods for bolstering the sensitivity of
instruments to the 21 cm EoR signal.

Before proceeding, it is worth reiterating the assumptions that
went into the previous derivation, and to consider any generality
that may have been lost:

4
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1. We assumed that we could work in the flat sky limit, which
we justified by noting that the 21 cm EoR power spectrum
P21(k) is not expected to evolve on the scale of the mode-
mixing introduced by this approximation.

2. We ignored the frequency dependence of the (u, v)-
coordinates of a baseline for the same reason. For baselines
longer than ≈300m, both of the above assumptions break
down and cause errors at the several-percent level.

3. We pedagogically treated the antenna primary beam as a
top-hat function, but argued that any primary beam with
FWHM wider than 30 arcmin creates a sufficiently small
convolving kernel in Equation (11) that its shape may be
neglected.

4. We have assumed the S/N in any individual k-mode
measurement to be much less than unity. Since any addi-
tional improvement to sensitivity comes from independent
k-modes whose inclusion beats down both thermal fluctua-
tions and sample variance, this assumption in effect allows
us to ignore sample variance as a significant source of error.

5. Finally, our value of observing time per mode in
Equation (20) represents a lower bound; its exact value
generally depends on baseline orientation and array lat-
itude and must be computed explicitly for specific EoR
experiment locations and configurations.

2.3. Combining Independent k-mode Measurements

With the sensitivity of one baseline to one k-mode derived,
we now turn our attention to the sensitivity boost that comes
from combining multiple baselines. In this section, we consider
an analytically tractable case, where each baseline measures an
independent k-mode. Statistically independent k-modes can be
combined to improve sensitivity proportionally to the square
root of the number of samples, N

1/2
s . We ignore sampling re-

dundancy—the possibility that many baselines can measure the
same k-mode—which closely approximates the response of
minimum-redundancy arrays used for imaging (see Section 3.1).
Although somewhat contrived, this example demonstrates how
several different sensitivity boosts that arise from system and
observing parameters. In Section 2.4 we will use numerical sim-
ulations to calculate the sensitivities of real array configurations,
including sampling redundancy.

Several assumptions are used to make this derivation
tractable. The final expression derived in this section—
Equation (25)—is not intended to be generally applicable, but
rather to illustrate the different effects that come into play when
combining measurements. The fully general case is presented
in Equation (27), where one must numerically calculate the ef-
fects of array configuration. Our principal assumption is that our
baselines uniformly sample the uv-plane within a radius umax.
As before, we also assume that our baselines are short enough
to neglect to contribution of k⊥ to k, generally true for baselines
under 300 m. Finally, using PAPER as a model, we assume an
array at 45◦N/S latitude observing for six sidereal hours per day
(tper day below) during which colder patches of the synchrotron
sky are overhead. Since we assume no sampling redundancy, it
is irrelevant whether these 6 hr of observation are spent tracking
a single phase center or are broken up into several observations
with different pointings.

Before we discuss the different sources of independent
k-mode samples, we define a fiducial measurement which
all improvements are relative to. In this section, we use
Equation (20), the sensitivity of one baseline measuring one
k-mode as our benchmark. We will refer to the new noise level

after combining measurements as Δ2
N(k) and express this value

relative to our fiducial value, Δ2
N,0(k).

We now will outline the different sources of independent
k-mode samples and present physical arguments for their
dependencies on various parameters. A full derivation, including
the prefactor of the final sensitivity result in Equation (25), is
presented in Appendix A.

1. Multiple line-of-sight samples. One source of independent
k-mode samples comes from the many line-of-sight Fourier
modes measured by a single baseline; since Δ2

21(k) is
expected to evolve on log-k scales, data may be binned
in equally spaced Δ ln k intervals, so that Ns(k) ∝ k.
For example, with 6 MHz observing bandwidth, B, a
single baseline will sample k ≈ 0.06 h Mpc−1 once, k ≈
0.12 h Mpc−1 twice, etc. This linearly increasing number
of independent samples versus k produces an S/N ∝
k1/2 scaling. The number of samples within a bin is
also dependent on the bin size, giving rise to a final
proportionality after combining line-of-sight modes:

Δ2
N(k) ∝

[
1

k

] 1
2
[

1

B

] 1
2
[

1

Δ ln k

] 1
2

Δ2
N,0(k). (22)

2. Multiple time samples. Another source of independent mea-
surements comes from the number of time bins available for
measuring Δ2

21(k) in a sidereal day. These additional sam-
ples grow linearly with the daily observation length, tper day.
(Accumulating samples over multiple days was already ac-
counted for in Equation (20).) Therefore, the sensitivity
increases as

Δ2
N(k) ∝

[
1

tper day

] 1
2

Δ2
N,0(k). (23)

3. Multiple uv-plane samples. A final source of independent
samples comes from baselines sampling different regions of
the uv-plane. The most straightforward way these samples
affect the sensitivity is through adding more baselines.
Each baseline is an independent measurement, so sensitivity
grows as the square root of number of baselines, or, linearly
with the number of antennas, N.
Second, we need to add up all the measurements across
the uv-plane. Using our assumption that uv-samples are
uniformly distributed within a circle of radius umax in the
uv-plane, we integrate contributions from rings of constant
|u| up to a distance |u| = umax. This integration is simplified
by noting that each ring of constant |u| contributes equally
to the sensitivity of the final measurement; as |u| increases,
the reduction in coherent integration time per (u, v, η)-
mode is offset by the increasing number of baselines
sampling within that ring. Integrating a constant sensitivity
contribution versus |u| gives rise to a u

1/2
max term in the

resulting residual noise estimate for minimum-redundancy
arrays.
There is also a factor of solid beam angle Ω−1/4, which
is a combination of two factors. First, there is a decrease
in integration time per (u, v, η)-mode associated with a
broader primary beam, which scales as the width of the
primary beam, Ω−1/2. This term is somewhat offset by a
second factor: the increased number of independent modes
sampled, contributing a factor of Ω1/4 to sensitivity. The
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result is

Δ2
N(k) ∝ u

1
2
max

[
1

Ω

] 1
4
[

1

N

] 1
2

Δ2
N,0(k). (24)

Combining all these different gains from binning the data with
the prefactor calculated in Appendix A yields the final result of
this section:

Δ2
N(k) ≈ 150

[
k

0.1 h Mpc−1

] 5
2
[

6 MHz

B

] 1
2
[

1

Δ ln k

] 1
2

×
[

Ω
0.76 sr

] 5
4
[

Tsys

500 K

]2 [
6 hrs

tper day

] 1
2

×
[

120 days

tdays

] [umax

20

] 1
2

[
32

N

]
mK2. (25)

2.4. The Sensitivity Benefits of Redundant uv-Sampling

As mentioned above, sensitivity to Δ2
21(k) depends on both

the sensitivity obtained in individual (u, v, η)-mode bins and
the number of bins sampled. As discussed in the context
of CMB analysis, sensitivity is most efficiently improved
by integrating coherently on select modes until S/N ∼ 1
is obtained, whereupon sampling additional modes to beat
down sample variance in the cosmological signal becomes
the most efficient way of improving sensitivity (Park et al.
2003). Equation (20) suggests that the PAPER experiment,
along with many other first-generation 21 cm EoR experiments
(McQuinn et al. 2006), will be firmly in the S/N < 1 regime for
individual modes for the near future. As a result, it is natural to
explore how sensitivity might be improved by choosing antenna
configurations that maximize the degree to which uv-bins are
sampled by multiple baselines.

In this section, we outline a formalism for computing the
sensitivity boost of a generic antenna array, expressed in terms
of a redundancy metric that tracks sensitivity relative to a fiducial
measurement, which we choose to be a single baseline with a 1 s
integration. The choice of fiducial integration time is arbitrary,
but affects the scaling constants in the equations that follow.

Next, we define a metric for the sampling redundancy
generated by an array,

f

f0
≡

∑
i n

2
i∑

i ni

, (26)

where f0 is the sampling redundancy of a single baseline with a
1 s integration and ni represents the number of 1 s samples falling
in uv-bin i. The ratio f/f0 measures the increase in sensitivity
for a redundant array over one in which there is no sampling
redundancy. We motivate the definition of sampling redundancy
in Appendix B and show that sensitivity increases as

√
f/f0.

The instantaneous (single-integration) redundancy of an array
ranges from f0 to Nf0, where N is the number of antennas in an
array configured for the densest non-overlapping packing of
antennas possible in two dimensions: a filled circular aperture;
we derive this case in Appendix B.3. However, computing the
instantaneous redundancy of an array does not account for any
additional redundancy that may be generated through Earth-
rotation synthesis. A baseline sampling a non-redundant uv-bin
can, some time later, migrate in the uv-plane to sample a bin
already sampled by another baseline. Generally, the redundancy
generated through Earth-rotation synthesis depends strongly on

antenna configuration. We will rely on numerically computed
redundancies for specific configurations.

We include the effect of sampling redundancy by using f
defined for 1 s integrations toward a transiting phase center,
calculated from Equation (16). Our result in Equation (27)
(which is derived in full in Appendix B), is expressed in terms of
fiducial observation and array parameters. Unlike Equation (25),
the effects of array configuration are now captured in the
computed value for f:

Δ2
N(k) ≈ 60

[
k

0.1 h Mpc−1

] 5
2
[

6 MHz

B

] 1
2
[

1

Δ ln k

] 1
2

×
[

Ω
0.76 str

] [
Tsys

500 K

]2 [
6 hrs

tper day

] 1
2

×
[

120 days

t

] [
32

N

] [
104f0

f

] 1
2

mK2. (27)

The value of f/f0 varies substantially with N and for different
antenna configurations. An array without redundant sampling
will have f/f0 = 1. A nominal value of f/f0 = 3.4 × 104,
representative of the antenna configurations considered later,
yields Δ2

N(k) ≈ 33 mK2 at k = 0.1 h Mpc−1. As described
in Section 2.3, we assume 6 hr observations. For PAPER,
these observations are phased to transit pointings separated by
2 hr and are accumulated into separate (u, v, η)-bins for each
pointing. (Two hours corresponds to the approximate width
of the PAPER primary beam, after which a new, statistically
independent region of sky dominates the data.) Since there can
be no redundancy between samples from different pointings,
this has the effect of somewhat reducing f. Generally, f accounts
for most effects relating to observing strategy.

3. ANTENNA CONFIGURATION STUDIES

Designers of interferometric arrays for sonar, radar, and radio
astronomy applications have long appreciated the necessity of
carefully choosing the physical placement of array elements to
produce desirable samplings of the uv-plane. One of the most
popular criteria—the minimization of image-domain sidelobes
arising from incomplete sampling—motivates array designs that
maximize the number of independent Fourier modes sampled, or
equivalently, minimize the redundancy with which uv-pixels are
sampled. Such minimum-redundancy configurations are valu-
able for characterizing point-source foregrounds to the 21 cm
EoR signal, since each uv-pixel provides unique information
for constraining the image-domain distribution of flux density.
All sampled Fourier modes contribute to each image-domain lo-
cation, making sensitivity independent of antenna arrangement
within a fixed maximum baseline length for image-domain mea-
surements. This gives rise to the traditional adaptation of the
radiometer equation for interferometers (see Wrobel & Walker
1999, their Equation (9-23)):

TrmsΩs = TsysΩ√
BtN (N − 1)

, (28)

where Ωs, the angular size of a synthesized beam, is implicitly
related to maximum baseline length.

In contrast, the sensitivity of Fourier-domain measurements
do depend dramatically on array configuration. First-generation
experiments will constrain the power-spectrum of 21 cm
EoR fluctuations by sampling k-modes accessed via spectral

6



The Astrophysical Journal, 753:81 (16pp), 2012 July 1 Parsons et al.

structure in sampled uv-pixels. As discussed in Section 2.4,
sensitivity-limited arrays will do best by redundantly sampling
a select number of uv-pixels. However, maximum-redundancy
array configurations run directly counter to the needs of image-
domain work, and will look counterintuitive to those familiar
with standard minimum-redundancy array configurations.

In Section 2.1, we discussed how a single baseline measures
Δ2

21(k) at a range of k-scales with the approximation that (u, v)
are not frequency dependent, and argue that this approximation
does not dramatically affect response to the 21 cm EoR signal.
The impact of frequency-dependent sampling on foreground
response is somewhat more concerning, and has been used to
argue for configurations that produce uniform sampling of the
uv-plane (Bowman et al. 2009). Such sampling could permit
chosen uv-modes to be sampled continuously versus frequency,
even if the baseline sampling them changes. In a future paper,
we will explore in detail the effects of frequency-dependent
uv-sampling, showing that for baselines shorter than ∼100
wavelengths, all but the smallest k-modes are accessible using
the inherent frequency-dependent uv-sampling produced by a
baseline. This forthcoming result contrasts with the view that
21 cm EoR arrays must produce uniform uv-coverage and
motivates the exploration of other maximum-redundancy array
configurations. With an eye toward using the inherent frequency-
dependent sampling of each baseline independently to sample
Δ2

21(k), we largely ignore the frequency dependence of array
sampling in the discussion of maximum-redundancy arrays;
redundant sampling will be redundant at all frequencies.

Both minimum- and maximum-redundancy configurations
have valuable properties for 21 cm EoR work. Array config-
urations aiming to incorporate aspects of both must attempt to
strike a balance between their opposing influences. Where this
balance lies depends on the relative immediacy of sensitivity
and foreground-removal needs. Given our current ignorance of
many foreground properties, it is most straightforward to con-
sider each type of configuration separately, as we will below.

3.1. Minimum-redundancy Array Configurations

Designing a minimum-redundancy antenna configuration re-
duces to choosing a real-valued sampling function A(x, y), with
Fourier dual Ã(u, v), such that

∫ |Ã|2du dv is minimized. This
optimization problem is usually discretized by sampling the
aperture plane on the scale of the aperture of a single antenna
element, and by assuming A(x, y) to be unity-valued at a loca-
tion containing an antenna element and zero-valued elsewhere.
We are often interested in dense packings of antennas that also
minimize the maximum distance of uv-samples from the origin.
Compact packings of antennas have the desirable property of
sampling nearly all Fourier modes for a targeted angular reso-
lution. Compact minimum-redundancy configurations can also
be trivially scaled to larger physical spacings to sample smaller
angular scales.

A fact that may be underappreciated in the radio astronomy
community is that this optimization problem has may parallels
with Golomb rulers (Sidon 1932; Babcock 1953), Golomb
rectangles (Robinson 1985), and Costas arrays (Costas 1984)—
mathematical constructions originally motivated by radar and
sonar applications. Investigation of Golomb rulers and Costas
arrays are active fields of mathematical research with interesting
applications (Golomb & Gong 2004). In particular, the study
of Costas arrays (N × N matrices with elements chosen such
that no two elements share a row or column and such that the
displacement vector between each pair of elements is unique)

has yielded algorithms for generating minimum-redundancy
arrays where N is near a prime number (Golomb & Taylor 1984).
For generating array configurations, directly computing antenna
locations following construction algorithms for Costas arrays is
a vast improvement over the iterative optimization approaches
presented in the literature (Keto 1997; de Villiers 2007).

Although Costas arrays do not quite capture the full
minimum-redundancy optimization problem (they omit sam-
plings along the u and v axes and they do not attempt to optimize
how compactly antennas are placed), they do sample approx-
imately one-quarter of the available uv-plane without redun-
dancy. This filling fraction exceeds what has been demonstrated
with other approaches in the literature. For comparison, we ex-
amine the dithered Reuleaux-triangle approach favored by Keto
(1997) for generating configurations with uniform uv-coverage,
scaled to the size of an equivalent Costas array (in this case, for
N = 24) to remove scale-dependence in the redundancy metric.
As we show in Figure 1, this configuration redundantly samples
28 locations with its instantaneous zenith-phased uv-coverage.
For imaging point sources in the high-S/N limit, this config-
uration loses 6.7% of the information accessed by a roughly
equivalent configuration derived from a Costas array.

As an example of a larger-sized minimum-redundancy con-
figuration derived from a Costas array, we produce the N = 36
antenna configuration shown in the upper left panel of Figure 1
following the Welch construction (Golomb & Taylor 1984),
where N is chosen to be one less than the prime p = 37.
According to this construction, we choose an integer α = 35
with the property that 0 < α � p such that αNmod p = 1
and αimod p �= 1 for 0 < i < N . This construction produces
row and column indices (i, αimod p) for placing antennas on
an N ×N grid. Note that (i, αi+j mod p) also produces a Costas
array for 0 � j < p. Figure 1 illustrates the antenna configura-
tion generated from a Costas array with j = 23, chosen so that
the resulting configuration could be augmented with one more
antenna (see the upper left panel of Figure 1) without incurring
any redundancy.12 For comparison with other antenna configura-
tions, we generate two realizations of this minimum-redundancy
configuration: one using 3.75 m spacing between rows and
columns (min37c), and one using 8 m spacing that would be of
more practical use for imaging foregrounds (min37). The per-
formance of these configurations are compared with maximum-
redundancy configurations in Figures 4 and 5. Costas arrays
efficiently generate minimum-redundancy arrays for imaging,
but these figures demonstrate that the minimal redundancy of
these arrays has negative repercussions for power-spectrum
sensitivity.

3.2. Maximum-redundancy Arrays

As shown in Section 2.4, sensitivity may be gained by
focusing limited collecting area on specific modes of the
power spectrum. However, the rising contribution of galac-
tic synchrotron emission at large angular scales, the domi-
nance of point-source emission at small angular scales, and

12 For certain Costas arrays, relaxing the restriction that no two elements share
a row or column allows one more antenna to be placed within the N × N
matrix of possible locations, generating new uv-samples without incurring
sampling redundancy. Such augmentations can be tested for in a Costas array
by first computing the uv-sampling matrix for a Costas array (done by
convolving the antenna placement pattern with itself) and then convolving the
result with the original antenna placement pattern. A zero value within the
original N × N matrix indicates a location where an antenna can be added
without increasing sampling redundancy. Many Costas arrays may be created
to test for augment-ability by trying all valid α and j, as defined above.
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Figure 1. Top left panel shows a minimum-redundancy antenna configuration based on an N = 36 Costas array (see Section 3.1). The associated instantaneous
zenith-phased coverage of the uv-plane is shown in the top right panel. For comparison, the bottom-left panel shows a 24 antenna configuration derived from a
Reuleaux triangle that was iteratively optimized to generate uniform uv-coverage (Keto 1997). This configuration has been scaled for comparison to the size of a
24 × 24 Costas array to remove the effect of physical scale on the redundancy metric. The uv-coverage of this configuration (bottom right panel) highlights the
28 redundant samplings with larger dots. Contrast this with Costas arrays, which are perfectly non-redundant and have simple construction algorithms for numbers
of antennas near prime numbers. The “x” in the top left panel shows where a 37th antenna can be introduced without generating redundant sampling if we relax the
constraint that Costas arrays must have only one antenna per row and column. The antenna layout in the top left panel, including the additional antenna, is scaled to
grid spacings of 3.75 m and 8 m in the configurations labeled min37c and min37, respectively, in Figures 2, 3, 4, and 5.

the expectation that low-order line-of-sight (smooth-frequency)
components must be used to suppress foregrounds suggest that
array configuration must be informed by foreground charac-
terization. Compact antenna configurations improve sensitiv-
ity by increasing sampling redundancy, motivating the centrally
condensed configurations explored for interferometers targeting
the 21 cm EoR signal (Bowman et al. 2006; Lidz et al. 2008).
Such configurations, however, suffer from a number of practical
deficiencies for this application:

1. The low fringe-rates associated with baselines sampling
small |u| modes impede the discrimination of celestial
signals from instrumental systematics (e.g., crosstalk).

2. Phase and gain self-calibration are compromised by the
lack of longer baselines.

3. Proximity of antenna elements can cause cross-coupling,
producing antenna-specific deviations in primary beam
response.

4. Foreground emission peaks in brightness at the small
|u|-modes that are most heavily sampled by centrally
condensed configurations.

Phase switching can help mitigate (though not eliminate)
crosstalk, and incorporating a relatively small number of
antennas at longer spacings can improve phase and gain calibra-
tion from point sources. Increasing the spacing between densely
packed antennas can substantially decrease cross-coupling at

the expense of the redundancy generated from Earth-rotation
synthesis. The fact that foreground emission peaks at small |u|
is unavoidable.

Fortunately, for measuring a physical scale at reioniza-
tion, a 21 cm EoR experiment has considerable flexibility in
choosing an angular scale, making it possible to generate an-
tenna configurations that reap many of the sensitivity benefits
of centrally condensed configurations but which avoid some
of the associated deficiencies by directing sensitivity toward
higher-|u| modes. Consider, for example, a configuration con-
sisting of two clusters of N/2 closely packed antennas whose
centers are separated by a distance larger than the diameter of
each cluster (see hex19x2 in Figure 2). Excluding the central
region of the uv-plane sampled by intracluster antenna pairs, we
see in Figure 3 that N2/4 samples are concentrated in a region
near |u| = 30. In this region, excluding Earth-rotation synthesis,
we compute from Equation (B13) that f/f0 = N/2. Including
redundancy generated by Earth’s rotation over the course of a
2 hr observation toward a transiting phase center, we compute
f/f0 = 1.1×104 following Equation (26). Furthermore, by ad-
justing the spacing between antenna clusters, this configuration
can be tuned to focus sensitivity to regions of the uv-plane where
galactic synchrotron and point-source foreground emission are
minimized.

The hex19x2 design described above and shown in Figure 2
can be improved upon in several ways. First, perturbing

8



The Astrophysical Journal, 753:81 (16pp), 2012 July 1 Parsons et al.

Figure 2. Shown above are the north–south (vertical axis) and east–west (horizontal axis) antenna positions in meters for various fiducial array configurations. With
the exception of min37c, these arrangements aim to improve power-spectrum sensitivity in the regime where errors are not dominated by sample variance in the
cosmological signal by redundantly sampling regions in the uv-plane with many baselines. The different configurations explore different design ideas, including
how maximum-redundancy arrays may be generated for regions farther from the center of the uv-plane. In contrast, min37c (see Figure 1) is an array configuration
tuned to minimize sampling redundancy, thereby improving imaging by maximizing the number of independent measurements of the uv-plane (see Section 3.1). The
uv-sampling patterns generated by these configurations are shown in Figure 3.

the shape of antenna clusters can improve overlap resulting
from Earth-rotation synthesis. Long rows of antennas (see
ln19x2 in Figure 2) do well for this; as the Earth rotates, this
sampling pattern slides over itself along the longest axis. As
a result, the new uv-samples generated are largely redundant
with regions that have already been previously sampled (see
Figure 3). It should be noted that the latitude at which an array
is deployed influences the design of maximum-redundancy ar-
ray configurations. At latitudes near 45◦N/S, the performance of
the row-based configurations we explore is largely independent
of the orientation of the rows. For arrays near the equator, rows
oriented east–west yield better sensitivity because the spacing
between rows is maintained through Earth-rotation synthesis. In
these cases, however, the slow fringe-rates of the north–south
baselines generated may make them more susceptible to instru-
mental systematics. Motivated by the locations of current 21 cm

EoR arrays, we have restricted ourselves to considering only
mid-latitudes.

An additional optimization relates to exploiting the
Hermitian-symmetry of the uv-plane for a real-valued sky: a
baseline vector u also samples the uv-plane at −u. As a result,
for sampling the uv-plane at the location of the displacement
between rows, the interior rows in antenna arrangements such
as ln4x9, ln5x7, and ln6x6 in Figure 2 are used in two pair-
ings—once with each adjacent row. For N antennas arranged
into R rows, R − 2 rows are used in both positive and neg-
ative pairings, generating a peak instantaneous redundancy of
N (R − 2)/R samples. This alone suggests that the number of
rows should be maximized for best sensitivity. However, when
Earth-rotation synthesis is considered, the row length N/R also
becomes important. By empirically comparing redundancy met-
rics for ln4x9, ln5x7, and ln6x6, and by including other
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Figure 3. uv-plane samplings shown above were generated for each of the antenna configurations from Figure 2, assuming a 2 hr observation at 40◦N latitude of a
zenith-transiting phase center at 150 MHz. Sampling is plotted using uv-bins that are 1.5 wavelengths on a side, with color scale indicating log10 of the number of 1 s
samples falling in each bin, ranging from 3 (white) to 5 (black). Antenna configurations generating redundant uv-sampling patterns increase sensitivity to particular
Fourier modes used to probe the Δ2

21(k) power spectrum at the expense of sampling multiple modes. Several of the configurations illustrated above direct sensitivity
toward regions at higher |u|, thereby avoiding the instrumental systematics and brighter foregrounds associated with sampling near the origin of the uv-plane. The
redundancy metrics (see Section 2.4) computed for these sampling patterns are shown in Figure 4.

comparisons for larger numbers of antennas, we have deter-
mined that the highest-redundancy configurations are generated
by nearly square arrangements, with R ≈ √

N .
In tuning the spacing between rows, there are several compet-

ing factors that need to be considered. The first is the increasing
brightness of galactic synchrotron emission at small |u| follow-
ing a C� ∝ �−3.7 scaling law (Chen 2004). Second, the ability
to control instrumental systematics decreases with low fringe-
rates. The third is that sensitivity reduces with increasing spacing
owing to baselines moving more quickly through the uv-plane as
the Earth rotates. The fourth, which will be discussed in greater
detail in a forthcoming publication, is the fact that the frequency-
dependence of uv-sampling becomes increasingly problematic
for foreground removal at longer baseline lengths. Finally, the
increasing dominance of point-source foregrounds at higher |u|
implies that there will be diminishing returns for reducing fore-
grounds by increasing baseline length. Taken together, these
factors imply that the spacing between rows should target the

shortest spacing at which galactic synchrotron emission and/or
instrumental systematics do not pose a problem. To standardize
the clustered antenna configurations we examine, we choose a
20 m fiducial spacing between clusters.

Optimizing families of maximum-redundancy configuration
styles is straightforward, algorithmically. Automating a broader
exploration of configuration space for maximally redundant con-
figurations is much more difficult, owing to the extremely low
entropy of these states in configuration space. Our experience
has been that random processes are highly unlikely to encounter
these configurations, even when a strong selective potential is
applied. In order to gain confidence that the manually gen-
erated maximum-redundancy configurations we explore are at
least nearly optimal, it is useful to compare them to the total
redundancy of compact antenna configurations (see hex37 in
Figures 2 and 4). Figure 4 illustrates that in the 10 < |u| < 20
region for which it was optimized, the ln5x7 configuration
achieves approximately 50% of the peak redundancy of hex37.

10



The Astrophysical Journal, 753:81 (16pp), 2012 July 1 Parsons et al.

Figure 4. Plotted above is the redundancy metric f/f0 (relating to sensitivity, see Equation (26)) for several of the antenna configurations in Figure 2 as a function
of the minimum distance umin that may be used for power-spectrum analysis, owing to bright foreground emission and instrumental systematics associated with low
fringe rates (see Section 3.3). The most centrally condensed configuration (hex37) maximizes f if regions within umin are not omitted. If a region with radius umin > 5
wavelengths is omitted, configurations with larger separations are preferable, most notably ln5x7, which dominates all other configurations out to twice the separation
between antenna rows. For comparison, two minimum-redundancy configurations (min37 and min37c, see Figure 1) are also plotted. The lower plot highlights how
the number of rows in a configuration affects redundancy.

Hence, we may have confidence that while other configurations
might outperform ln5x7, they will not do so by more than a
factor of two.

Finally, it is worth pointing out that far from being a cali-
bration liability, maximum-redundancy arrays may actually be
more conducive to calibration than their minimum-redundancy
counterparts. Redundant samplings of the uv-plane with many
antenna pairings produce independent measurements of the
same quantity, facilitating the calibration of per-antenna gain
and phase parameters (Liu et al. 2010). Especially for con-
figurations involving shorter baselines sensitive to large-scale
structures on the sky, the fact that many baselines fundamen-
tally measure the same quantity can improve calibration by
easing the need for an accurate sky model on which to base a
self-calibration loop.

3.3. Sensitivity Performance

Of the different configurations considered for maximum-
redundancy arrays (see Figure 2), the optimal for sensitivity
choice depends on the degree to which the shortest baselines
are subject to instrumental and celestial interference. To param-
eterize our ignorance of what are the shortest baselines that may
be effectively used, we introduce a parameter umin to describe
a minimum cutoff for baselines contributing to power-spectrum
sensitivity. For the antenna configurations shown in Figure 2,
with corresponding uv-coverage in Figure 3, we compute the
redundancy metric as a function of umin, omitting regions inside
of |u| < umin from the numerator in Equation (26). The results
are shown in Figure 4.

If all baselines may be used effectively to measure Δ2
21(k), the

most compact configuration (hex32 in Figure 2) maximizes the
redundancy metric. If baselines shorter than five wavelengths
are unusable, however, the array configurations that are most
effective employ rows of antennas that have high instantaneous
sampling redundancy and also generate substantial redundancy
through Earth-rotation synthesis. In particular, we show in the

bottom panel of Figure 4 that the ln5x7 configuration dominates
all other configurations within the 5 < umin < 20 region for
which its row spacing was tuned. Based on the success of this
design, we extrapolate to a 132 antenna design consisting of
11 rows of 12 elements each, with a 3.75 m spacing between
antennas within a row. This configuration (labeled ln11x12 in
Figure 5) was shown to have a higher redundancy metric than
8 × 16 and 16 × 8 designs.

Using the redundancy metric read from Figure 4 at a chosen
umin, we can calculate a sensitivity as a function of k by applying
Equation (27). In Figure 5, we plot the sensitivities for selected
configurations using observation parameters matched to the
PAPER experiment operating at 150 MHz with a 6 MHz
observing bandwidth, assuming 120 day drift-scan observations
over six sidereal hours of sky using phase centers spaced
two hours apart. We compare these sensitivities with a toy
reionization model derived from Equation (21) under optimistic
assumptions that produce 100 mK2 peak fluctuations in the
range 0.1 < k < 10 h Mpc−1. As shown in Figure 5, we find
that a 132 antenna deployment of PAPER antennas will, under
ideal conditions, have the requisite sensitivity to detect peak
21 cm EoR fluctuations at a 3σ level at k < 0.25 h Mpc−1

with approximately four months of observation. This result
is contingent upon antennas being deployed in a maximum-
redundancy configurations, and does not include the potential
effects of foreground removal on sensitivity, which will be
discussed in a future paper. As shown by the sensitivity curves
for minimum-redundancy configurations (min37 and min37c in
Figure 5), maximum-redundancy configurations yield nearly an
order-of-magnitude improvement in sensitivity for 37-antenna
arrays. This improvement is larger for bigger arrays, owing to the
fact that f/f0 ∝ N2 for maximum-redundancy arrays, whereas
f/f0 = 1 for minimum-redundancy arrays (except when scaling
configurations below the critical size where adjacent samples of
the uv-plane are no longer independent; in this case, redundancy
scales with maximum baseline length as f/f0 ∝ u−4

max).
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Figure 5. This plot shows ideal, 1σ noise-sensitivity levels to the 21 cm EoR power spectrum using various array configurations at 150 MHz, assuming PAPER
observing parameters for 120 day drift-scan observations over six sidereal hours of sky with a 6 MHz observing bandwidth (see Equation (27)). Except for hex37 (where
umin = 0 is used), the sensitivities shown assume umin = 10 from Figure 4. Minimum-redundancy configurations (min37 and min37c, above) show significantly
reduced sensitivity relative to the best-performing ln5x7 maximum-redundancy configuration. The ln11x12 configuration is an extension of the ln5x7 design
to 132 antennas, with a 3.75 m pitch between antennas within a row. The thick black line denotes an optimistic toy model for peak 21 cm EoR fluctuations (see
Equation (21)). Predictions for the signal range between this curve and a factor of 10 smaller. In this plot, k is dominated by the line-of-sight component for the
compact configurations we consider; at smaller k, sensitivity departs from a power law as the contribution of a baseline’s length to k becomes important.

Although these sensitivity figures were computed using
observing parameters for the PAPER experiment, it is straight-
forward to extrapolate them to other experiments. In particular,
Equation (27) makes very few assumptions about observing
strategies that may differ between experiments—all such differ-
ences are grouped into the numerically computed redundancy
factor. PAPER employs drift-scan observations that limit ob-
serving time toward one phase center to approximately 2 hr. For
experiments that track the sky with dishes or with station beam-
forming, the amount of time spent observing toward the same
phase center may be considerably longer. As a result, there may
be additional redundancy generated by using Earth-rotation syn-
thesis over longer periods. In all of these cases, computing the
sampling generated for a single phase center yields the correct
redundancy value for use in Equation (27).

A natural question that arises from the efficacy of antenna
clustering for improving sensitivity is whether, given the density
of sampling within a row, it might be desirable to employ
larger antenna elements (perhaps parabolic cylinders) in lieu
of numerous smaller antenna elements. Phrased differently, is
the O(N ) improvement to S/N that results from implementing a
fixed collecting area with N antenna elements worth the O(N2)
cost of correlating them? In the limit that the correlator is a
dominant cost in the construction of an array, using large dishes,
beam-forming antennas prior to correlation, or even operating
separate sub-arrays may all represent attractive options for more
cheaply improving sensitivity. On the other hand, extrapolating
from currently deployed systems using Moore’s Law applied
to computational density suggests correlators might not be the
dominant cost for forthcoming arrays (J. Manley 2010, private
communication), in which case smaller elements yield the best
sensitivity for a fixed collecting area. This case may be even
stronger, noting that array configurations consisting of parallel
rows are particularly conducive to correlation via electric-field

gridding techniques (Tegmark & Zaldarriaga 2009) that replace
the O(N2) scaling of the computational cost of correlators
with an O(N logN ) scaling based on the fast Fourier transform
algorithm.

4. CONCLUSION

Reionization experiments aiming to detect the power
spectrum of 21 cm EoR fluctuations will need to achieve a
tremendous level of foreground removal. For characterizing
these foregrounds, minimum-redundancy array configurations
are most useful. However, as efforts turn to constraining the
3D power spectrum of 21 cm EoR fluctuations, the maximum-
redundancy configurations we have presented provide a sub-
stantial increase in sensitivity over their minimum-redundancy
counterparts in the regime where sensitivity is not limited by
sample variance in the cosmological signal—a regime that 21 cm
reionization arrays will find themselves in for the foreseeable
future. While the most compact antenna arrangements yield the
highest-redundancy sampling of the uv-plane, the performance
of these arrangements may be compromised by increased fore-
ground brightness at low |u| and by instrumental systematics
associated with low fringe-rates.

In order to avoid the difficulties of working near the origin
of the uv-plane, we show how maximum-redundancy array
configurations can be tuned to regions of the uv-plane where
foregrounds and systematics are likely to be smaller. Of par-
ticular interest are a class of configurations using parallel rows
of antennas that generate substantial instantaneous sampling re-
dundancy, but are also aligned to enhance redundancy through
Earth-rotation synthesis. Using such a configuration, we demon-
strate that under ideal conditions, a 132-antenna deployment of
PAPER observing for 120 days will have the requisite sensi-
tivity to detect the power spectrum of the brightest expected
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reionization fluctuations at a 3σ level at k < 0.25 h Mpc−1,
using bins of Δ ln k = 1. The real-world sensitivity of such an
array will be affected by foreground removal requirements and
actual performance, and could be worse than this.

Next-generation 21 cm reionization arrays such as phase-II
of HERA will have improved sensitivity. Even so, HERA’s
choice of array configuration must balance the competing goals
of imaging bright EoR structures and characterizing the power-
spectrum of EoR fluctuations. For current and future arrays,
this choice must be informed by parameters that are currently
poorly constrained: the degree to which foregrounds can be
modeled, removed, or otherwise differentiated from the 21 cm
EoR signal; the angular power spectra of the dominant fore-
grounds; the nature of instrumental systematics that arise; and
the geometry and collecting area of the most effective antenna
elements. Exploration of these design parameters is underway
with phase-I HERA efforts such as PAPER and MWA. PA-
PER is in a unique position to use the mobility of its anten-
nas to explore different configurations for 21 cm reionization
work. Maximum-redundancy arrays can be used to push sensi-
tivity limits for power-spectrum measurements while minimum-
redundancy configurations will help glean more information
about foreground properties. Near-term activities can explore
the results of tuning array sensitivity relative to foreground
brightness and examine the influence of cross-coupling and
crosstalk on power-spectrum measurements. Continued work
in this area will aim to establish an optimal array design for
next-generation 21 cm EoR work.

We dedicate this paper to the memory of Don Backer,
who pioneered PAPER and laid the foundations for HERA.
A.P. thanks Philip Matchett Wood for helpful discussions of
Golomb rulers and Costas arrays and acknowledges support
from the NSF AAPF (0901961) and from the Charles H. Townes
Postdoctoral Fellowship. M.M. acknowledges support form the
Einstein Postdoctoral Fellowship. PAPER is supported through
the NSF-AST program (0804508).

APPENDIX A

SENSITIVITY FROM COMBINING
INDEPENDENT k-MODES

This appendix derives Equation (25) in full. We treat each
of the three sources of independent samples mentioned in
Section 2.3 separately. We begin with Equation (20), reproduced
here:

Δ2
N(k) ≈ 2.8 × 104

[
k

0.1 h Mpc−1

]3 [
Ω

0.76 sr

] 3
2

×
[

Tsys

500 K

]2 [
120 days

tdays

] [ |u|
20

]
mK2. (A1)

A.1. Combining Modes along the Line of Sight

Let us bin the line-of-sight modes in logarithmic increments.
For a fixed logarithmic bin size of Δ ln k, the number of modes
in each bin grows linearly with k and linearly with the chosen
observing bandwidth B. The bandwidth term enters because
it sets the total number of k-modes measured for a constant
frequency channel resolution. We incorporate these scalings into
Equation (A1), using that sensitivity will scale as the square-root
of the number of independent k-modes binned, and counting the

modes in a fiducial bin to set the prefactor. For a bin centered
around k = 0.1 h Mpc−1, a bin of width Δ ln k has bin edges
at 0.06 h and 0.165 h Mpc−1. A bandwidth of 6 MHz produces
a k-space resolution of 2π/YB ≈ 0.083 h Mpc−1, where Y is
given by Equation (18). Therefore, we count approximately 1.27
independent k-modes, resulting in a

√
1.27 ≈ 1.13 fold increase

in sensitivity, or

Δ2
N(k) ≈ 2.48 × 104

[
k

0.1 h Mpc−1

] 5
2
[

6 MHz

B

] 1
2
[

1

Δ ln k

] 1
2

×
[

Ω
0.76 sr

] 3
2
[

Tsys

500 K

]2 [
120 days

tdays

] [ |u|
20

]
mK2.

(A2)

A.2. Combining Time Samples and Modes across the uv-plane

To combine modes measured by different baselines through-
out the uv-plane and to calculate the amount of time a baseline
samples a single (u, v, η) mode, we must assume an array con-
figuration. As stated in Section 2.3, we assume an array con-
figuration that generates uniform, non-overlapping coverage in
the uv-plane out to a radius umax. This assumption makes the
problem algebraically tractable, and is similar to the minimum-
redundancy arrays discussed in Section 3.1. We explicitly sum
measurements from (u, v, η)-mode bins, or “uv-pixels,” over
the uv-plane. We use the calculated the noise in any uv-pixel
from Equation (A2), and add up all the samples within each ring
of constant uv-distance |u|. Finally, we sum over all the rings
out to umax.

Let us define two additional terms. Let the sampling density
of the uv-plane, ρ, be given by

ρ ≡ Nbl

πu2
max

≈ N2

2πu2
max

, (A3)

where Nbl is the number of baselines and N is the number of
antenna elements. This equation restates our assumption that
the uv-plane is uniformly sampled out to a radius umax. We also
define tper mode, the time a baseline samples a single uv-pixel
relative to a chosen phase center before Earth rotation moves it
into another pixel:

tper mode ≡ t20

[
Ω0

Ω

] 1
2
[

20

|u|
]

, (A4)

where t20 is the amount of time a 20 wavelength baseline spends
in one pixel (used a fiducial scale), Ω0 is a fiducial primary beam
size (0.76 sr for PAPER), and |u| is the baseline length. Note
that, per the assumptions of the derivation in Section 2.3, we
neglect here the possibility that multiple baselines may sample
the same uv-pixel under Earth-rotation synthesis. Note also that
t20 depends on the array latitude; for PAPER it is approximately
13 minutes; this factor has already been absorbed into the
prefactor in Equation (20).

With these terms defined, we first calculate the number of
uv-pixels within a ring of radius u. We choose an arbitrary ring
width w, which will drop out of the derivation later. The number
of baselines that sample within this ring is then

Nbl ≈ 2π |u|wρ. (A5)
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The number of pixels sampled depends on the observing time,
tper day and the time spent in each pixel, tper mode:

Npx,ring = Nbl

[
tper day

tper mode

]
. (A6)

To calculate the sensitivity of one ring in the uv-plane, we
average over the sensitivity of each pixel within the ring. Each
pixel within the ring has equal sensitivity (e.g., Equation (A2)),
so this is a simple, unweighted average:

Δ2
N,ring =

∑
px

Δ2
N,px

Npx
= Δ2

N,px√
Npx

, (A7)

where Δ2
N,px is given by Equation (A2). Plugging in values

calculated above gives

Δ2
N,ring = Δ2

N,px√
2π |u|wρ

tper day

tper mode

= Δ2
N,px√

2π |u|wρ
tper day

t20

[
Ω
Ω0

] 1
2 |u|

20

.

(A8)
The next step is to combine all the measurements from

different rings. In the case presented here, the noise power in
each ring is equal, as the

√
|u|2 term in the denominator of

Equation (A8) cancels the |u| term in Equation (A2). We can
therefore do another unweighted average to combine the rings:

Δ2
N =

∑
rings

Δ2
N,ring

Nrings
= Δ2

N,ring√
Nrings

= Δ2
N,ring√

umax/w
, (A9)

where the last step uses the fact that the number of rings is the
radius of the circle over the width of a ring, umax/w. Plugging
Equations (A2) and (A3) into this equation yields

Δ2
N = Δ2

N,px

[
20

|u|
] [

Ω0

Ω

] 1
4
[

t20

tper day

] 1
2 [umax

20

] 1
2

[
1

N

]
. (A10)

We then reach our final result by substituting in Equation (A8),
choosing a fiducial observation time of tper day = 6 hr (recall that
t20 ≈ 13min), and choosing an array size of N = 32 elements:

Δ2
N(k) ≈ 150

[
k

0.1 h Mpc−1

] 5
2
[

6 MHz

B

] 1
2
[

1

Δ ln k

] 1
2

×
[

Ω
0.76 sr

] 5
4
[

Tsys

500 K

]2 [
6 hr

tper day

] 1
2

×
[

120 days

tdays

] [umax

20

] 1
2

[
32

N

]
mK2. (A11)

APPENDIX B

SENSITIVITY FROM COMBINING REDUNDANT
SAMPLES OF k-MODES

In this appendix, we first motivate our definition of the
redundancy factor presented in Equation (26) in Appendix B.1.
Next, in Appendix B.2 we derive Equation (27) in full. Finally,
we present an analytic calculation of the redundancy metric for
a filled circular aperture in Appendix B.3.

Several times below we will refer to sensitivity relative to a
fiducial measurement. For this benchmark, we choose a single

baseline with a 1 s integration, which we call Δ2
N,1 s. The

choice of fiducial integration time is arbitrary, but affects the
scaling constants in the equations that follow. For baselines
with length |u| < 104 (essentially all baselines useful for EoR
measurements), Earth-rotation is unimportant on 1 s timescales.
Therefore, our fiducial measurement is equal to Equation (16),

Δ2
N,1 s(k) ≡ X2Y

k3

2π2

Ω
2t

T 2
sys, (B1)

with t = 1 s.

B.1. Motivation for the Redundancy Metric

In this section, we outline a formalism for computing the
sensitivity of a generic antenna array, expressed in terms of a
redundancy metric. The sensitivity calculation in Section 2.3
and Appendix A assumed a uv-coverage that produces equal
sensitivity in any ring of the uv-plane. We were then able to
perform an unweighted average to get the final sensitivity by
summing over rings. More generally, the final sensitivity will be
a weighted average of the sensitivity of all the uv-pixels:

Δ2
N =

∑
i

wiΔ2
N,i∑

i

wi

, (B2)

where i is an index labeling an individual uv-pixel and Δ2
N,i

is the noise variance of a mode. The optimal weights for any
pixel are proportional to the inverse variance of noise in that
pixel. Since repeated measurements of a uv-pixel add coherently
in temperature, redundant measurements beat down the noise
in temperature-squared linearly with the number of samples.
Therefore, we choose optimal inverse-variance weights wi =
n2

i , where ni is the number of fiducial samples in that pixel, and
Equation (B2) then becomes

Δ2
N =

∑
i

n2
i

Δ2
N,1 s

ni∑
i

n2
i

=
∑
i

niΔ2
N1 s∑

i

n2
i

. (B3)

We further simplify this equation by noting that the coefficients
of a weighted sum of random numbers will add in quadrature:

Δ2
N =

√∑
i

n2
i Δ4

N1 s∑
i

n2
i

= Δ2
N1 s√∑
i

n2
i

. (B4)

We compare this result to the reduction in noise that would
occur without any two samples being of the same mode (i.e., ni
being uniformly unity):

Δ2
N,no−red =

√∑
j

Δ4
N1 s∑

j

1
= Δ2

N1 s√∑
j

1
, (B5)

where the index j labels pixels. (We use a different letter here
to differentiate these modes from those used in Equation (B4).)
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The number of samples has remained constant between this case
and the one calculated above,

∑
j

1 = ∑
i

ni , giving us

Δ2
N,no−red = Δ2

N1 s√∑
i

ni

. (B6)

The relative improvement of redundant sampling over the
completely non-redundant case is the ratio between these two
terms:

Δ2
N

Δ2
N,no−red

= Δ2
N1 s√∑
i

n2
i

√∑
i

ni

Δ2
N1 s

=

√√√√√
∑
i

ni∑
i

n2
i

. (B7)

We use this result to motivate the definition of our metric for the
sampling redundancy given in Equation (26):

f

f0
≡

∑
i n

2
i∑

i ni

. (B8)

.

B.2. Derivation of Maximum-redundancy Sensitivity

To derive array sensitivity including the effects of sampling
redundancy, we begin by evaluating Equation (B1) at z = 9,
substituting in Equation (19):

Δ2
N1 s(k) ≈ 540.

4π2
k3ΩT 2

sys
h−3Mpc3

sr Hz s
. (B9)

Expressing the result in terms of our fiducial observing and
telescope parameters gives

Δ2
N1 s(k) ≈ 2.6 × 109

[
k

0.1 h Mpc−1

]3

×
[

Ω
0.76 sr

] 3
2
[

Tsys

500 K

]2

mK2. (B10)

Next, we incorporate several sensitivity contributions calculated
previously: a factor of 1.13 for logarithmic binning of line-of-
sight modes (derived in Appendix A.1), a factor of (2.16 ×
104)1/2 for the number of independent 1 s observations in a
6 hr observing window, and a factor of 120 for the number of
days observed. There is also a factor of (Nbaselines)

1
2 sensitivity

increase, since each baseline provides an independent sample
at every integration. For our fiducial array of 32 antennas, this
term is ≈√

512. The result is an expression for the sensitivity
of an array, assuming that every integration of every baseline is
treated as a sample of an independent k-mode:

Δ2
N(k) ≈ 5.8 × 103

[
k

0.1 h Mpc−1

] 5
2
[

6 MHz

B

] 1
2
[

1

Δ ln k

] 1
2

×
[

Ω
0.76 sr

] 3
2
[

Tsys

500 K

]2 [
6 hrs

tper day

] 1
2

×
[

120 days

tdays

]
mK2. (B11)

Finally, as derived in Appendix B.1, the effects of sampling
redundancy may be included by introducing a factor of [f/f0]

1
2 .

Using a fiducial value of f/f0 = 104, we have our final result:

Δ2
N(k) ≈ 58

[
k

0.1 h Mpc−1

] 5
2
[

6 MHz

B

] 1
2
[

1

Δ ln k

] 1
2

×
[

Ω
0.76 str

] [
Tsys

500 K

]2 [
6 hrs

tper day

] 1
2

×
[

120 days

t

] [
32

N

] [
104f0

f

] 1
2

mK2. (B12)

B.3. Calculating f/f0 for a Filled Circular Aperture

Here we explicitly calculate the instantaneous redundancy of
an array where antennas are arranged to uniformly sample an
aperture within a region defined by |r| < R, with zero sampling
elsewhere. Using that the convolution of two disks of area πR2

is a cone of height h = πR2 and base radius 2R, we can compute

f =
∫ 2R

0 2πr dr h2
(
1 − r

2R

)2∫ 2R

0 2πr dr h
(
1 − r

2R

)

=
2πh2

(
r2

2 − 2 r3

6R
+ r4

16R2

) ∣∣2R

0

2πh
(

r2

2 − r3

6R

) ∣∣2R

0

= h

2
. (B13)

Using that h = πR2 = NAe, where N is the number of
antennas and Ae is the effective area of a single antenna, we have
f = NAe/2 = Nf0. In general, the redundancy metric must be
calculated numerically to account for more complicated array
configurations and the effects of Earth-rotation synthesis.
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