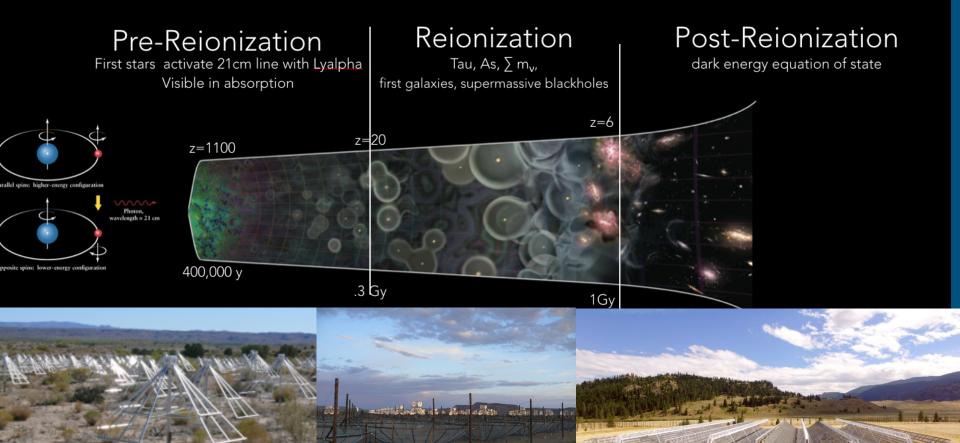
# Precision Interferometry Simulation For 21cm Cosmology

Danny Jacobs
October 2020
Arizona State University

Presenting work by the Radio Astronomy Software Group: Jonathan Pober, Bryna Hazelton, Adam Lanman,


Daniya Seitova, Bharat Gehlot

And HERA: Steven Murray, Lily Whitler, James Aguirre, and many others

#### Outline

- Short review: timeline and physics goal to power spectrum
- Take some serious infrastructure
- Low significance detections in the presence of systematics
  - Paciga, Patil, Cheng.
  - All fell victim to experimenter bias. Many lines of code, many parameters, simulators tightly coupled to analysis.
  - How do we check pipelines producing 3 sigma results?
- Instrument Designs Still differ
  - Compare HERA and MWA
  - How do we design arrays to 1e-5 precision
  - Not unique to interferometry, show Nivedita's plot
- Solutions:
- Diversity of analysis methods. Enabled by data interchange standards. See pyuvdata and casacore ms
- Simulator test objects. Calibrated to first principles. Community-backed. Puvsim
- Pyuvsim design goals
  - Transparent and easy to read and use code. -> JOSS publication,
  - Useful community product -> well defined sim parameters, use standard data interchanged, published reference products
  - Well tested against analytic models -> Unit tests run analytic tests, reference sims lock it in, comparison to other simulators and data to keep it real.
  - Accurate calculation of model, no approximations in the name of speed -> support for parallelization speedups
- Design Details
  - Test levels:
    - Unittests of simple physics, What precision level?
    - reference simulations for external comparison and internal checkpointing. What precision level?
    - validation products for specific datasets Who's right?
  - Unittests
    - Many
    - - Call out analytic diffuse tests as an open problem.
  - Reference tests
    - Ginned up arrays and samplings that cover physically relevant axes (time, baselines, frequencies, polarizations, sources)
  - Testing against data

  - Scaling.



CHIME - Bandura et al 2014

LWA - Delillo et al 2020

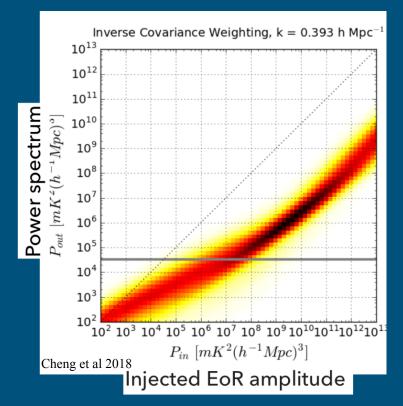
Danny Jacobs

Low Frequency Cosmology Lab

Arizona State University

October 2020

RA - Deboer et al 2017

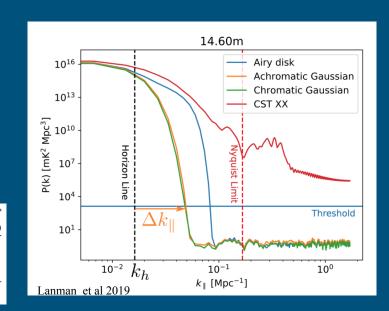

## Low Significance detections in the presence of systematics not in the error model

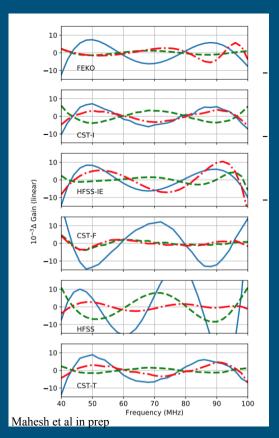
Paciga et al 2013 - GMRT

Patil et al 2016 - Lofar

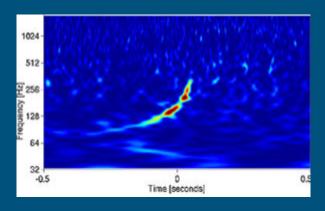
Cheng et al 2018 - PAPER

Unintentional experimenter bias is real and affects us all.





#### Instrument Design to 1:10,000

Small changes in instrument design make a big difference.


Ex Experiments vs SKA Observatory.

| Beam                    | $A_{\rm eff}~({\rm m}^2)$ | $S/N(\sigma)$ (avoidance, subtraction) |
|-------------------------|---------------------------|----------------------------------------|
| Airy pattern            | 155                       | 18.7, 90.8                             |
| Measured, feed at 5.3 m | 93.0                      | 12.7, 74.3                             |
| Measured, feed at 5 m   | 77.1                      | 10.6, 67.9                             |
| Measured, feed at 4.5 m | 68.5                      | 10.0, 63.9                             |
| Neben et al 2016        |                           |                                        |






# How to distinguish reality from a false positive or negative



2010 - A surprise injection at LIGO



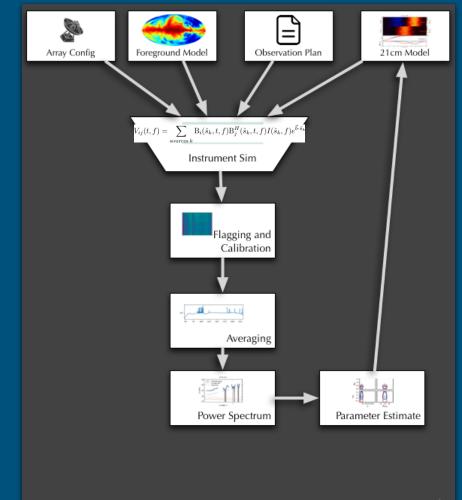
2018 - Routine detection in O2

#### The generalized interferometer model

Beam and other propagation effects entire sky  $V_{ij}(t,f) = \int \int_{4\pi}^{\pi} B_i(\hat{s},t,f) B_j^H(\hat{s},t,f) I(\hat{s},f) e^{\vec{b}\cdot\hat{s}} ds^2$ 

#### Ideal Simulation Setup

The ideal case


Add cosmology to sky model.

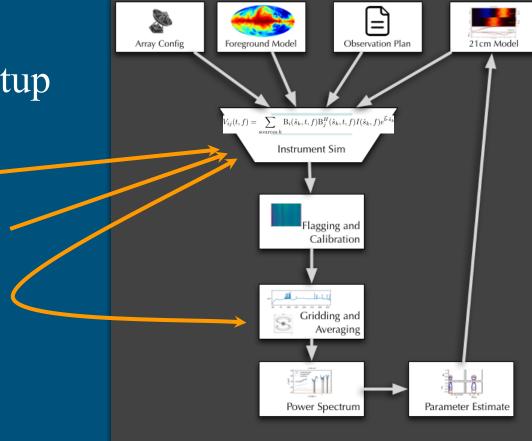
Calculate V\_ij with independent simulator

Run through entire pipeline

Detect and fit parameters

Compare with injection.



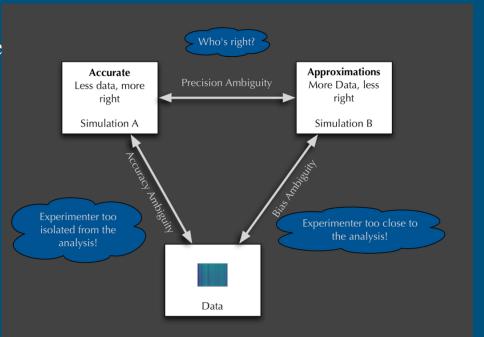

#### Typical Simulation Setup

Approximations in Vij (danger)

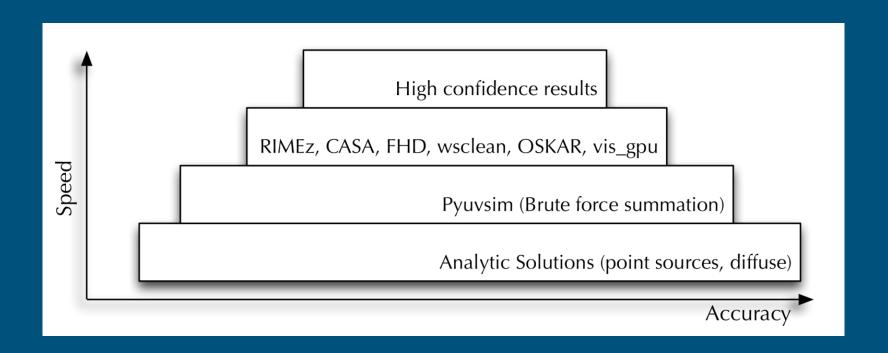
Sims checked mostly against data (danger!)

Sim/Analysis/validation codes by same person (more danger!)

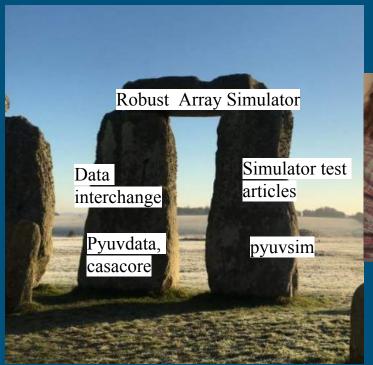
Independent simulation is the key




#### How do we know if our simulation is right?


Recognize different classes of ambiguitie

Validation from first principles


Multiple comparison options



#### Building high confidence validation



## An awful awful Managementy slide.



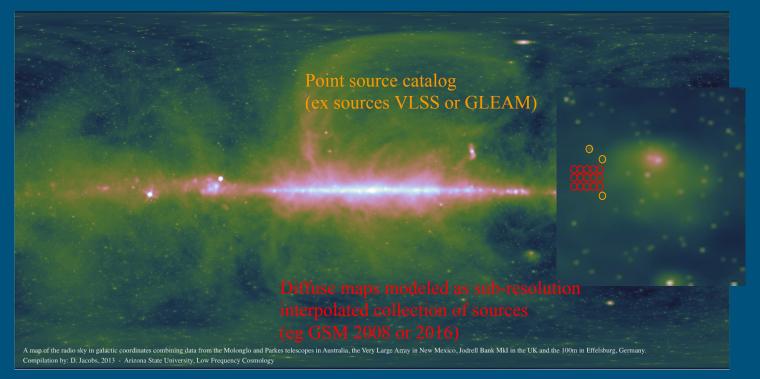


#### The pyuvsim interferometer model

Integral over entire sky

Beam and other propagation effects

Sky flux vs position s


Baseline Vector

$$V_{ij}(t,f) = \int \int_{4\pi} \mathbf{B}_i(\hat{s},t,f) \mathbf{B}_j^H(\hat{s},t,f) I(\hat{s},f) e^{\vec{b}\cdot\hat{s}} ds^2$$

Quantize sky into arbitrarily dense collection of sources

$$\hat{s} \rightarrow \hat{s}_k$$

$$V_{ij}(t,f) = \sum_{\text{sources } k} \mathbf{B}_i(\hat{s}_k, t, f) \mathbf{B}_j^H(\hat{s}_k, t, f) I(\hat{s}_k, f) e^{\vec{b} \cdot \hat{s}_k}$$



$$V_{ij}(t,f) = \sum_{\text{sources } k} \mathbf{B}_i(\hat{s}_k, t, f) \mathbf{B}_j^H(\hat{s}_k, t, f) I(\hat{s}_k, f) e^{\vec{b} \cdot \hat{s}_k}$$

Gaussian Component Model (Standard Clean Component decomposition)

Danny Jacobs - Low Frequency Cosmology Lab - Arizona State University - October 2020

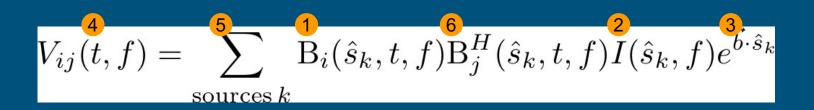
## Pyuvsim design goals

| Goal                                | Done                                                                                                                                                          | То Do                                                                   |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Transparent and easy to read code.  | Publication in JOSS*, which has high community standards     pyuvsim.readthedocs.io                                                                           | Developers guide<br>Set up more users                                   |
| Useful community product            | <ol> <li>Well defined reference sim parameters</li> <li>Standard data interchange</li> <li>Published comparison analysis</li> </ol>                           | Paper detailing test protocol                                           |
| Well tested against analytic models | <ol> <li>Analytic comparisons run in unittests</li> <li>Reference sims lock in results</li> <li>Comparisons to other sims and data to keep it real</li> </ol> | Paper detailing analytic diffuse (Lanman in prep)                       |
| Accurate calculation of model       | <ol> <li>No approximations in the name of speed</li> <li>Support for parallelization speedups</li> <li>HPC scaling tests</li> </ol>                           | HPC time on XSEDE next quarter HTCondor version under test. GPU version |

\*Lanman et al 2019, Journal of Open Source Software

#### Pyuvsim Validation Layers

#### **Versioning Approach**


We use a generation.major.minor format.

- · Generation Release combining multiple new physical effects and or major computational improvements. Testing: Backed by unittests, internal model validation, and significant external
- . Major Adds new physical effect or major computational improvement. Small number of improvements with each release. Testing: Backed by unittests, internal model validation and limited external comparison.
- . Minor Bug fixes and small improvements not expected to change physical model. Testing:

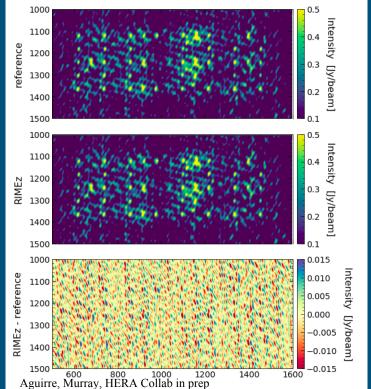
| Level                    | Run Time                         | Setup                                         | Version    |
|--------------------------|----------------------------------|-----------------------------------------------|------------|
| Unittests                | Run on every git push in minutes | Most Tolerances<br>1e-8                       | minor      |
| Reference<br>Simulations | Run every major version in hours | Routine Checkpointing and detailed validation | major      |
| Validation products      | HPC jobs 10k cpu-hours or more   | Tuned to match observation or simulator needs | generation |

#### Pyuvsim physics unittests

- 1. Beam Jones matrix modeling and interpolation
- 2. Sky catalog interpolation and spectral modeling
- 3. Source position rotation, baseline rotation, vector product, baseline redundancy
- 4. Simulation configuration setup and file generation
- 5. Single source analytic model, small angle approximation, horizon cutoff.
- 6. Heterogeneous beams



#### Pyuvsim reference simulations


#### First Gen - 6 sims testing times, frequencies, sources and beams

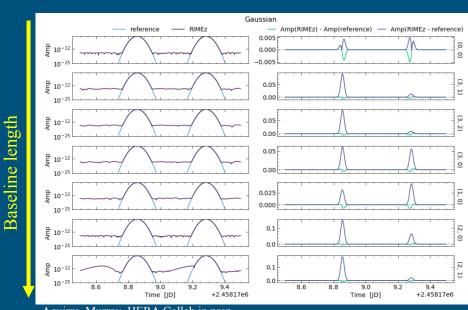
| Name (beam)   | Purpose                                                                                                    |
|---------------|------------------------------------------------------------------------------------------------------------|
| 1.1           | Test imaging and source orientation.                                                                       |
| 1.2 (gauss)   | Check that sources move appropriate and rise/set, and pass through the beam properly.                      |
| 1.2 (uniform) | Check that sources move appropriate and rise/set (stay visible near horizon).                              |
| 1.3 (gauss)   | Check that visibilities have sensible frequency evolution. Get observable fringes. Realistic primary beam. |
| 1.3 (uniform) | Check that visibilities have sensible frequency evolution. Get observable fringes.                         |
| 1.4           | Check phasing precision and simulate realistic data.                                                       |

### Reference sims validating HERA pipeline

RIMEz: fast m-mode sim by Zac Martinot (UPenn grad)

Validation comparison by Lily Whitler (ASU Undergrad)




October 2020

### Reference sims validating HERA pipeline

**RIMEz:** fast m-mode sim by Zac Martinot (UPenn grad)

Validation: comparison by Lily Whitler (ASU Undergrad)

**Conclusion:** RIMEz floor at 1e-16 due to limited precision in FFT. Position errors at arcseconds to minutes due to astrometry engine imprecision



Aguirre, Murray, HERA Collab in prep

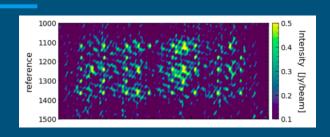
#### Pyuvsim reference simulations

First Gen - 6 sims testing times, frequencies, sources and beams

Second Gen - 5 sims, larger more physical beams, polarization

| Name (beam)  | Purpose                                                                       |
|--------------|-------------------------------------------------------------------------------|
| 2.1 (airy)   | Replace the first generation reference simulations by covering multiple axes. |
| 2.2 (UVBeam) | Check that visibilities are sensible with UVBeam.                             |
| 2.3 (airy)   | Check that visibilities are sensible with a known power spectrum diffuse map. |
| 2.3 (airy)   | Check that visibilities are sensible with the healpix map.                    |
| 2.4          | Check phasing polarized response(not done yet).                               |

**Accurate calculation of model** 


1. No approximations in the name of speed

2. Support for parallelization speedups

3. HPC scaling tests

HPC time on XSEDE next quarter HTCondor version under test. GPU version

#### Naive Scaling



?

#### **Data Points:**

60 antennas, 1 time, 100 frequencies, 43 sources (spelling HERA) = 177k voxels

#### **Sky Model:**

43 source (spelling HERA)

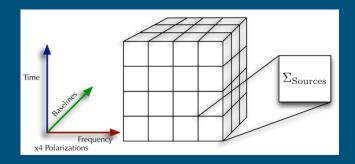
**Compute:** ~0.4 CPU-hours

#### **Data Points:**

128 antennas, 60 times, 600 frequencies = 292M voxels

#### **Sky Model:**

1M GLEAM sources +100k diffuse NSIDE 128 = 1.1M sources

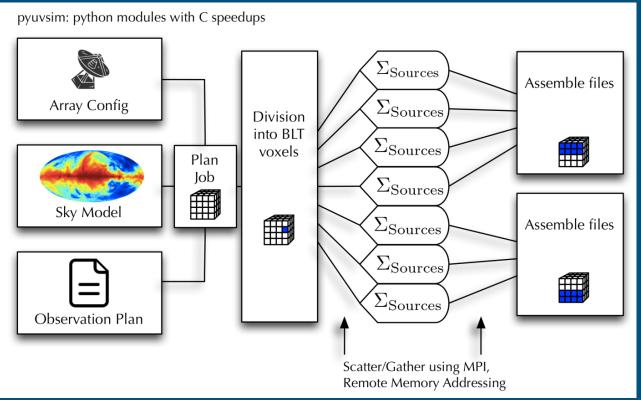

Naive scaling: 1.4M CPU-hours?!?

#### Simplistic Parallelization

Very Parallel\* Good for spreading out

Vector rotations and summations Good for multicore/LAPACK optimization

$$V_{ij}(t,f) = \sum_{\text{sources } k} \mathbf{B}_i(\hat{s}_k, t, f) \mathbf{B}_j^H(\hat{s}_k, t, f) I(\hat{s}_k, f) e^{\vec{b} \cdot \hat{s}_k}$$




<sup>\*</sup>There are other ways to break down the Vij matrix, see eg gpu vis.

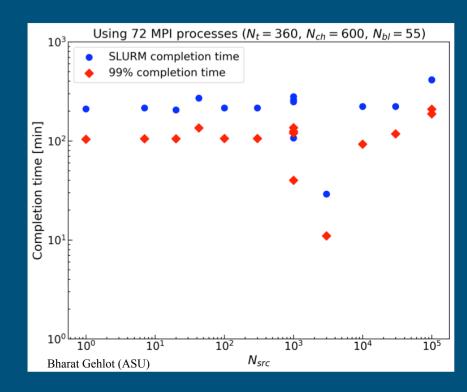
- 1. No approximations in the name of speed
  - 2. Support for parallelization speedups
  - 3. HPC scaling tests

HPC time on XSEDE next quarter HTCondor version under test. GPU version

## **Optimizations**

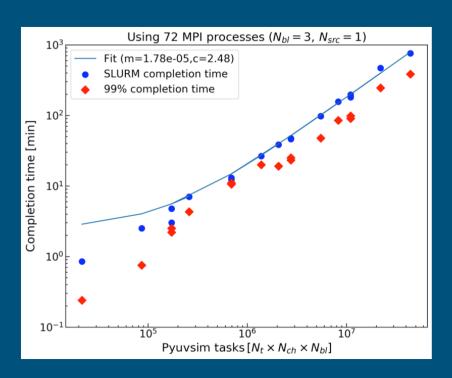


## Source Scaling


Constant Ncores

Same Data volume

**Increasing Source counts** 


Completion time is flat up to 2e4 sources

Appears to be linear thereafter. (Not shown)



October 2020

#### Linear with data volume



October 2020

#### The MWA "Golden Minute" reference sample. The reference snapshot for multiple pipelines. One of the most studied 21cm data sets in the world.

## Big Run



| Antennas           | 128 MWA Layout   |
|--------------------|------------------|
| Beam Model         | Latest EM Sim    |
| Times              | 60               |
| Frequencies        | 768              |
| Polarizations      | 1                |
| Total Data Volume  | 374M data points |
| Sources            | ~1M GLEAM        |
| Cores              | 1000             |
| Cores Per Task     | 4                |
| RAM per Core       | 4.5GB            |
| Projected run time | 23 hours         |
| Actual run time    | 12 hours         |
| Queue time         | 28 days (!)      |

## Next steps

| Goal                                | То Do                                                                   |
|-------------------------------------|-------------------------------------------------------------------------|
| Transparent and easy to read code.  | Developers guide<br>Set up more users                                   |
| Useful community product            | Paper detailing test protocol                                           |
| Well tested against analytic models | Paper detailing analytic diffuse (Lanman in prep)                       |
| Accurate calculation of model       | HPC time on XSEDE next quarter HTCondor version under test. GPU version |