21 CM COSMOLOGY

21 CM COSMOLOGY

KA

DANIEL C. JACOBS NSF POSTDOCTORAL FELLOW, ARIZONA STATE UNIVERSITY

Dark Ages and Cosmic Reionization

THE LARGE SCALE UNIVERSE

THE LARGE SCALE UNIVERSE

21CM COSMOLOGY

- Precision Cosmology
 - at high z, linear pre-reionization 10^16 modes (compared to 10^7 CMB) initial conditions, neutrino mass
 - at low z, emission in wells, intensity mapping, BAO and lensing dark energy eq. of state or other models
- Astrophysical
 - can see times prior to formation of emitters (opens up the dark ages to exploration)
 - probes reionization directly

REIONIZATION IN 21CM

- pre-21cm probes
- 21cm cosmology
- foregrounds
- current results
- the future

CMB and Reionization

- electrons in ionized universe scatter the polarized CMB
- I<10 (horizon at reionization)
- small optical depth (a weak ~1% signal)

$$\tau_{\rm e} = 0.087 + -0.015$$
 -

implications of optical depth

- difficult to get reionization earlier than z<15
- z<13, just about anything goes
- the earlier it starts, the longer it goes on.

CMB constraints

- electrons in ionized universe scatter the polarized CMB
- I<10 (horizon at reionization)
- small optical depth (a weak ~1% signal)

$$\begin{aligned} & \tau_{\rm e} = 0.087 \, \text{+/-} \, 0.015 \, \underbrace{\qquad \text{WMAP 7}}_{\text{Te ion}} \simeq 10.5 \pm 1.1 \\ & \tau_{\rm e} = 0.066 \pm 0.012 \, \underbrace{\qquad \text{Planck (Feb 2015)}}_{\text{Te ion}} \qquad z_{\rm reion} \simeq 8.8 \pm 1.2 \\ & \tau_{\rm e} = 0.078 \pm 0.012 \, \underbrace{\qquad \text{Planck (July 2015)}}_{\text{Te ion}} \qquad z_{\rm reion} \simeq 9.9 \pm 1.8 \end{aligned}$$

Robertson et al 2013

Gunn - Peterson Absorption

Gunn and Peterson 1963; Barkana and Loeb 2001

6.42

J1148+5251 z = 6.42

J1030+5254 z = 6.48

http://loco.lab.asu.edu/danny_jacobs

More missing Lyalpha photons

- accounting for selection effects and likely evolution scenarios
- the number of lyalpha emitters drops with increasing redshift
- Explanation:
 - A) fewer such galaxies
 - B) absorption Modeling suggests patchy reionization and neutral fraction>0.3 at z~8

What do objects tell us?

- survey volumes are small compared to patchiness scale
- 3D simulations with current surveys have x_HI>0.05 at z=7

Dark Ages and Cosmic Reionization

current non-21cm measurements:

galaxy model dependent highly sample limited best probe only works at low HI densities

Cowen 2013

Dark Ages and Cosmic Reionization

current non-21cm measurements:

galaxy model dependent highly sample limited best probe only works at low HI densities

21cm:

Directly probes HI narrow spectral line, (frequency maps directly to redshift) can theoretically survey all visible universe optically thin (cubes!)

Cowen 2013

21cm Observables

• Two features to measure: the global signal and the fluctuations global signal: **single antenna.** dark ages dynamics and reionization fluctuations: **interferometer** can distinguish different models of reionization and late dark ages ν [MHz] 500 100 50 10 5

GLOBAL TEMPERATURE

D. Jacobs, 2015

imaging

- signal amplitude ~20mK
- first generation sensitivity: 80mK
- SKA sensitivity: 4mK
- near future: **statistical measures**

McQuinn ea 2007 MNRAS 377

Credit: M. Alvarez (CITA) & R. Kaehler (Stanford)

Credit: M. Mcquinn (Berkeley)

Reionization physics in a nutshell

Grieg and Mesinger, MNRAS 2015, arXiv:1501.06576

CONSTRAINING CMB COSMOLOGY

Liu et al in prep

Mesinger et al 2014

Evoli et al 2014

Challenges

- Foregrounds
 - 9 orders of magnitude in mK^2
 - spectrally smooth (unlike 21cm line)
- Interference
- Sensitivity

Radio Frequency Interference

Human Interference

EDGES

EDGES update 2015

- Rogers et al. 2015 confirmation of ionospheric model and first-ever direct detection (as far as we can find) of electronic thermal emission from ionosphere.
- Mozdzen et al. 2015 (submitted) beam chromaticity model shows foreground subtraction is very sensitive to beam pattern. New "blade" dipole design deployed to minimize effects.
- Current observing campaign began October 2014. Looking promising... :) should improve on previous limits
- Two wavelength bands now: 50-100 MHz (First Light) and 100-200 MHz (reionization) -- you can see the lowband antenna halfway to the hut in the picture. It is a scaled copy of the high-band antenna

PAPER and MWA close up

	PAPER	MWA	
Antenna	dipole	phased dipole tiles	
antenna positions	grid	radial	
spectrum	100-200MHz	80-300MHz	
location	Karoo Desert (SKA-South Africa)	Western Australia (SKA-Australia)	
field of view	60 degrees	30 degrees	
Strength	systematic rejection	imaging capability	
Weakness	limited sensitivity	uneven spectral coverage	

FIELDS OF VIEW

First Gen Reionization Sensitivity

	Avoidance		Subtraction	
Instrument	Drift	Track	Drift	Track
PAPER 128	1.56		4.46	
MWA 128	0.66	0.86	2.50	3.15
LOFAR	0.70	1.90	7.48	12.22

Name of the game: Noise (not foreground) limited measurements

Foregrounds

pretty much all smooth spectrum

MWA SCIENCE

80 degrees

mwatelescope.org

mwatelescope.org

https://youtu.be/ymZEOihlldU

Loi et al GRL, 2015

mwatelescope.org

Foregrounds

pretty much all smooth spectrum

Galactic Synchrotron

Dillon, Liu, Tegmark 2013

HI 21cm

units

Foregrounds!

http://loco.lab.asu.edu/danny_jacobs

Foreground Lessons

- Avoidance is easiest but least sensitive
- Source subtraction is best but is also the hardest
- Sources at the horizon are the first hurtle
- the galaxy is probably showing up on long baselines
- averaging baselines without care can lead to spectral issues
- modeling of covariance can put foregrounds into errors instead of a bias

DELAY SPECTRUM: AVOIDANCE WITHOUT GRIDDING

Interferometry 101

The delay spectrum (a 1D power spectrum)

Foregrounds on a single baseline

http://loco.lab.asu.edu/danny_jacobs

Widefield Foregound simulation

arxiv:1502.07596 Thyagarajan et al 2015a,b arXiv:1506.06150

MEAN FOREGROUNDS

MAKING CUBES

Gridding leakage

CARROLL 2014

FOREGROUND CATALOG

SUBTRACTING SOURCES NEAR THE HORIZON

POWER SPECTRUM FOREGROUND CONTAMINATION REDUCTION

Liu, Parsons, Trott PrD 2014a&b

EMPIRICAL COVARIANCE ESTIMATION/MINIMIZATION

Dillon et al PrD 2015, arxiv:1506.01026

D. Jacobs, 2015

EMPIRICAL COVARIANCE ESTIMATION/MINIMIZATION

Dillon et al PrD 2015, arxiv:1506.01026

D. Jacobs, 2015
YEAR 2 PAPER RESULTS

AP, **DCJ**, et al 2014, Jacobs 2015

Ali, **DCJ**, et al 2015

Early Heating.

- order of events uncertain, inc xray heating
- If it didn't happen. -> HI in deep absorption
- Low X-Ray luminosity (but enough Lya for WF)
- Global amplitude constraint (450K at z=8, EDGES) $\Delta_{21}^2(k) = \langle T_b \rangle^2 \Delta_i^2(k)$
- Pop II vs Pop III

Furlenetto, Oh, Briggs 2006

PAPER YEAR 2 RESULTS

HYDROGEN EPOCH OF REIONIZATION ARRAY

Parsons (UCB) Aguirre (UPenn) Sievers (UKZN) Morales (UW) Furlanetto (UCLA) Bowman (ASU) Hewitt (MIT-Kavli) Tegmark (MIT) Jacobs (ASU) Carilli (NRAO\Cavendish) Bernardi (SKA -SA)

REIONIZATION.ORG

HYDROGEN EPOCH OF REIONIZATION ARRAY

- 14m transit dish, 331 element array
- PAPER feed
- MWA-type node architecture lacksquare

- Fast focus minimizes chromaticity
- Joint MWA PAPER enterprise
- 0.1 km^2

HYDROGEN EPOCH OF REIONIZATION ARRAY

- 14m transit dish, 331 element array
- PAPER feed
- MWA-type node architecture lacksquare

- Fast focus minimizes chromaticity
- Joint MWA PAPER enterprise
- 0.1 km^2

*scale approximate

Next Gen Reionization Sensitivity

	Avoidance		Subtraction	
Instrument	Drift	Track	Drift	Track
PAPER 128	1.56		4.46	
MWA 128	0.66	0.86	2.50	3.15
LOFAR	0.70	1.90	7.48	12.22

HERA uv coverage

Danny Jacobs

1km

86

<u>ht</u>

Grieg and Mesinger, MNRAS 2015, arXiv:1501.06576

Grieg and Mesinger, MNRAS 2015, arXiv:1501.06576

EPOCH OF XRAYINATION

Summary

 Reionization and the Dark Ages are the last unexplored parts of the cosmological timeline. Significant focus of both Cosmology and Astronomy fields. Difficult with traditional methods/objects.

21cm can probe both regions. Made possible by modern electronics & computing

 MWA and PAPER (2005-2016) observing now. Already constraining pathological models.

 HERA (2015-2020): will pin down reionization timeline, distinguish between plausible models, and provide first images

SKA Low (2021+) full tomographic imaging to 10Mpc scales

Thank you!

Correlated stuff

LOFAR status

- Best images have 10^6 dynamic range, 6arcsec resolution and 10s of uJy RMS (this is very very low)
- Currently working on:

 Polarization leakage (in preps Jelic ea, Khan ea)
 ionospheric effects

 (Vedanthan arxiv:

 1412:1420, Mevius)
 effects of self-cal and imaging (Patil ea, Yattawatta ea)

LOFAR Polarization Sneak preview

- 1-10K of polarized signal
- Mostly diffuse, low RM

A. z>200: $T_{CMB} = T_K = T_S$ by residual e-, photon, and gas collisions. No signal.

B. z~30 to 200: gas cools as $T_{k}\approx$

 $(1+z)^2$ vs. $T_{CMB} \approx (1+z)$, but $T_S = T_K$ via collisions => absorption, until density drops and $T_S \rightarrow T_{CMB}$

C. $z\sim20$ to 30: first stars => Ly α photons couples T_K and T_S => 21-cm absorption

D. $z\sim6$ to 20: IGM warmed by hard X rays => $T_K > T_{CMB}$. TS coupled to T_K by Lya. Reionization is proceeding => bubble dominated E. IGM reionized

after a similar slide by carilli

LOFAR Update

Variance Statistic: Patil 2014 arxiv:1401.4172 Noise limited at 6hrs: Yatawatta A&A 550 136 Foreground methods: Chapman et al 2012 MNRAS, 2013 MNRAS

Actual Science

- Gas must be heated to within 400K of the CMB. (As determined by the lowest lowest k bins)
- If the power spectrum is "peaky". It must be even much hotter still.

PAPER Construction

The Karoo Array Telescope is hosting PAPER at its site

PSAZ2 Grid

2012