DANNY JACOBS DANIEL.C.JACOBS@ASU.EDU DANIELCJACOBS.COM - LOCO.LAB.ASU.EDU 20 MARCH 2019 DRONE BASED EXTERNAL CALIBRATION FOR LOW FREQUENCY OBSERVATORIES

noto: Josh Dillon

The Many Ages of Neutral Hydrogen

reionization.org

LWA, OVLWA, HERA, MWA, PAPER, LOFAR, EDGES LOFAR 5

CHIME, MHZ N Tienlai, Hirax **X** 2000

reionization.org

Some 21cm instruments

DETECTING FLUCTUATIONS

- Theoretical fluctuation size: 20mK
- First gen instruments: power spectrum sensitivity SNR~2
- Power spectrum evolves with redshift

McQuinn reionization.org - danielcjacobs.com

POWER SPECTRUM ANALYSIS WITH AN INTERFEROMETER

Native Interferometer Image Cube 3D Power spectrum

reionization.org

reionization.org

When we do this.

3D Power spectrum

We get this!

reionization.org

reionization.org

Beam Maps necessary for foreground subtraction

reionization.org

IF WE HAVE PRECISION BEAM MAPS WE CAN DO BETTER!

Subtracting sources in sidelobes reduces power in wedge

Pober et al. 2015

ANECHOIC CHAMBER MEASUREMENTS OF MWA TILE

Model Variance

Analysis by Ben McKinley et al

see also Sutinjo et al, Rad Sci, 2015

Catalog Comparison

al Jacobs et al 2013

USING SKY SOURCES - LIMITED BY EAST-WEST SYMMETRY

SKA Aperture Array Verification Program

virone et al IEEE AWPL, 2014

virone et al APS IEEE, 2014

Chang et al arxiv:1505.05885 ~1GHz

Using ORBCOMM

Neben et al Radio Science, 2015, vol 50

Orbcomm Null Test

-

50m

Launch point

1

.

Banana

North ORBCOMM calibration dipoles

South ORBCOMM calibration dipoles

N <

Orbcomm Null Test

-

50m

Launch point 33338-8-

Banana

112

North ORBCOMM calibration dipoles

N <

South ORBCOMM calibration dipoles

Orbcomm Null Test

(1)

50m

Orbcomm Beam Ratio Map

Launch point 333388-8-

Samana

N <

North ORBCOMM calibration dipoles

South ORBCOMM calibration dipoles

Drone: 3DR X8

monofilament sling

ECHO v1 - 2015

Source: VCO synthesizer (137-2GHz)

UBlox GPS

Antenna: Bicolog bowtie 100-2Ghz

HEALPIX Flight Path

100m

Looking from above

Polarization locked to cardinal directions

Looking from above

Polarization locked to cardinal directions*

*does not give equal weight to all pols at all sky locations

ECHO Null Test

-

50m

ECHO Null Test

-

50m

Orbcomm Beam Ratio Map ECHO Beam Ratio Map

Launch point 33338-8-

Secondaria

N <

North ORBCOMM calibration dipoles

South ORBCOMM calibration dipoles

ECHO Null Test

-

50m

North ORBCOMM calibration dipoles

South ORBCOMM calibration dipoles

N <

ECHO Comparison to Model

.

50m

N <

South ORBCOMM calibration dipoles

Comparison with other data

Jacobs et al 2017 danielcjacobs.com

reionization.org

Version 1 system: 4x 15 minute flights Goal: one 35 minute flight

Future Improvements: Faster Measurements

Future Improvements: Attitude Control

50m

-

STIFFER LIGHTWEIGHT MOUNT

South ORBCOMM calibration dipoles

ECHOV2

Rigid mount

Larger platform, ~40min flight time, better attitude stability

29

Reflection/Refraction

DISH REFLECTIONS Measured em simulation Time domain simulation -10Delay Spectrum (dB) -20 -40 -50-600 Delay (nS) 400 -400-200200

Next Steps

Reflection/Refraction

400

Ref Dipole

DANNY JACOBS UNIVERSITY OF PENNSYLVANIA 26 SEPT 2018

DANIEL.C.JACOBS@ASU.EDU DANIELCJACOBS.COM - LOCO.LAB.ASU.EDU

THANKS!

