Deployable Optical Receiver Array

Cubesat demonstration

NASA Smallsat Technology Program, ASU, JPL

D. Jacobs – Engineering Coffee – 4 Sept 2020

Jet Propulsion Laboratory California Institute of Technology

Dora Team

- Jose Velazco (333M)
- Andy Klaib
- Uriel Escobar (UC Irvine)
- Sean Cornish (USC)
- Sarah Spector (Umilwaukee, 2020 Intern)
- Charles Lindsey (MIT, 2020 Intern)

- Danny Jacobs (PI)
- Judd Bowman
- Mickey Horn
- Jaime Sanchez de La Vega (II Lab)
 - Katrina Lewis (SESE)
 - Isabella All (Aerospace)
- CSE Capstone Group
 - Zachary Hoffman (CS/Robotics)
 - Jah Markabowski (CS/Robotics)
 - Justin Colyar

Need for high bandwidth interconnect

- Crosslink between spacecraft
- Swarm instruments
- Reduce DSN load in planetary networking

SunRISE

6 element radio interferometer 0.1 to 30MHz

3U Cubesat

Downlink via DSN and correlates on the ground

Description of ISOC

ISOC enabled Swarm

HOUL University

California Institute of Technology

Slide by Jose Velazco

DORA

- One of the limitation for high data rate optical communications is the Tx/Rx aperture size
- Tx/Rx apertures are typically **compact** and **conformal** to the spacecraft body
- This also limits pointing freedom

ISOC Link Budget

Slide by Jose Velazco

Dora link budget

Slide by Jose Velazco

DORA Supporting LUNAR NET

DORA in LEO

Rendering by Jaime Sanchez de La Vega

DORA enabled cubesat in proposed LEO test

DORA Cubesat Design

- Pheonix Heritage with updates
 - Beagle bone computer
 - MAI attitude controller
 - Planet openLST radio
 - 6x2U panels. 2 deployable, 4 fixed
 - GPS
 - More Batteries
- KubeOS Linux-based OS
 - Standardized CCSDS protocol

System Architecture

- 1. DORA CubeSat
- 2. MEMS mirror
- 3. DORA Receiving Panels
- 4. Ground Transmitter
- 5. Ground Receiving Panel

DORA DEployment

DORA Deployment (Fold -in mode)

DORA Transciever functional Diagram

- Silicon Photomultiplier detectors
- Order 100 detectors combined per panal
- ADC for Angle detirmination
- MEMS mirror steers +/-10deg

SensL SiPMs and Panels

SensL 3mm x 3mm C Series SiPM 144 SiPMs populated on standard 1.57mm thick2 layer PCB with 1mm spacing

Slide by Sean Cornish

DORA Aperture - 736 SiPMs

Lumped Element vs Microstrip

Lumped vs strip

This prototype design uses 4 panels

FPGA ANGLE CALCULATION

- 100us pulse embedded in incoming signal
- ADC reads power
- FPGA detects pulse
- If enough panels see pulse,
- Use known angular response of SiPM panels to infer incoming Angle
- Steer Tx beam back towards Rx

Inverse Variance Weighting to compensate for bad sensor input

Simulation using lab measured detector noise AoA accuracy required: <u>1.4mdeg</u>

			(degrees)
		Ideal AOA	31.000
	AOA with noise		30.870
	AOA noise corrected		30.972
			(mdeg)
Erro	or without noi	-130	
	Error with noi	-28	

Sarah Spector

DORA Operations

Conops and ground station

- Fly in Sun-Nadir mode
- Turn towards laser source (either by command or using AoA)
- Uplink BER test
 - Against stored pattern
 - Download upload via UHF
- Downlink BER test
 - Uplink required to close, use loopback
- Possibly support networking
- Possibly support direction
- Safety / Regulatory
 - 1W IR Laser

Conops

- Fly in Sun-Nadir mode
- Confirm health via UHF
- Find with Ground laser
- Calibrate panels
- Turn towards laser source (either by command or using AoA)

Conops with working Rx panel and pointing

Pointing testing

- II Lab facility under development
- Test and calibrate cubesat pointing
- Air bearing
- Helmholtz coils
- Sun simulator
- Simulation in the loop

Arizona State

Schedule

- Preliminary Design work (summer 2020)
 - Software and computer eval
 - Concept of operations
 - Cubesat parts selection
 - Payload: FPGA design, signal board, power combiners
- First flatsat prototype: Dec 2020
- First laser prototype: Dec 2020
- First Mechanical prototype: Dec 2020
- First combined prototype: April 2020
- Capstones Due: May 2020

- Summer 2021
 - Spacecraft EDU
 - Ground terminal
- CDR Aug 2021
- Fall 2021:
 - SC Testing
 - Second laser prototype testing
- Spring 2021
 - EDU and Payload integration testing
- Project complete July 2021

Thanks!

Key Performance Parameters

Parameter	Required	Target
KPP #1 - Angle of Arrival Accuracy	20 arcseconds	5 arcseconds
KPP #2 - MEMS Pointing Accuracy	20 arcseconds	5 arcseconds
KPP #3 - Maximum Tolerable Drift Rate	0.1° / second	1° / second
KPP #4 - Maximum Off-Axis Angle	5°	36°
KPP #5 - Sustained Data Rate	0.5 Gbps	1 Gbps
KPP #6 - Bit Error Rate	10 ⁻⁸	10-9
Transmit Power	1000 mW	2000 mW
Transmit Optics Collimation	100 arcseconds	20 arcseconds
Stray Light Rejection	Sun within 90°	Sun within 30°