

Methods for detecting the 3D percolation of photons in the early universe.

Danny Jacobs - Arizona State University BASP January 2013

Reionization

LIGHTING UP THE COSMOS

Time: 210 million years	290 million years	370 million years	460 million years	540 million years	620 million years	710 million years	
Width of frame: 2.4 million light-year	s 3.0 million light-years	3.6 million light-years	4.1 million light-years	4.6 million light-years	5.0 million light-years	5.5 million light-years	
Observed wavelength: 4.1 meters	3.3 meters	2.8 meters	2.4 meters	2.1 meters	2.0 meters	1.8 meters	

JEAN-FRANCOIS PODEVIN (illustration); STEVEN FURLANETTO, AARON SOKASIAN AND LARS HERNQUIST Harvard University (simulations)

The Epoch of Reionization

credit: B. Ciardi

Noisy Images

- Typical amplitude: 10-30mK
- Typical noise after deep imaging: 10-30mK
- Statistical detection regime
- Foregrounds are 1000s of K

Zaroubi et al 2012

The Murchison Widefield Array (MWA, http://www.mwatelescope.org) and the Precision Array for Probing the Epoch of Reionization (PAPER, http://eor.berkeley.edu)

Statistical detection

- Power spectrum
- Weiner filtering
- pdf/difference pdf
- bispectrum
- wavelets
- threshold clustering function

Statistical detection

- Power spectrum
- Weiner filtering
- pdf/difference pdf
- bispectrum
- wavelets
- threshold clustering function

Statistical detection

- Power spectrum
- Weiner filtering
- pdf/difference pdf
- bispectrum
- wavelets

threshold clustering function

maging Required

Interferometry and the Power Spectrum

interferometry measures in Fourier Space

Foregrounds have smooth spectra

• Foregrounds are spectrally smooth -reionization is not.

Dillon et al 2013

• Much of the foreground is point sources. Which can be simply modeled

Response to Point Sources

delay spectrum

• The interferometer response to point sources

• Is a delta function in the third power spectrum dimension

Averaging over many many sources

- Sources limited by primary beam, and ultimately by the horizon
- maximum delay increases with length of baseline.

Another Perspective

- Each baseline samples the fourier plane.
- Distance from the center of the plane increases radially

Another Perspective

- Each baseline samples the fourier plane.
- Distance from the center of the plane increases radially
- This is also the basic description of the Fourier Slice Theorem
- Each delay transformed baseline spectrum is a projection slice of the sky

Dective $v[\lambda]$

Summary of the Reionization Problem as compared to Medical Imaging

- Separate the data into three components
 - Foregrounds
 - Noise

Medical Equivalent

- Construct a holographic model
- High noise environment (like ambient field NMR)

• a bubble and void-like structure

anomolous structure

Summary

- wide bandwidth correlated spectroscopy of a 3D region
- filter a holographic model of the dominant signal
- Detect anomalous structure in a high noise environment
 - NB: This holography is made possible by the linearity of ElectroMagnetism

Beyond linearity

- the delay transform uses linearity of EM to derive position information
- meta-materials allow the encoding of additional information.
- Scale up this single pixel feed. (20GHz,40cm)

Hunt et al, Science (2013)

Beyond linearity

- the delay transform uses linearity of EM to derive position information
- meta-materials allow the selective encoding of additional information.
- Scale up this single pixel feed.
 (@20GHz 40cm)
 (@150MHz-60m)
- One PAPER row = 200m

20

Hunt et al, Science (2013)

Beyond linearity

- the delay transform uses linearity of EM to derive position information
- meta-materials allow the selective encoding of additional information.
- Scale up this single pixel feed.
 (@20GHz 40cm)
 (@150MHz-60m)
- One PAPER row = 200m

Hunt et al, Science (2013)

Some pictures (or The End)

