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ABSTRACT

A critical challenge in measuring the power spectrum of 21 cm emission from cosmic reionization is compensating
for the frequency dependence of an interferometer’s sampling pattern, which can cause smooth-spectrum
foregrounds to appear unsmooth and degrade the separation between foregrounds and the target signal. In this
paper, we present an approach to foreground removal that explicitly accounts for this frequency dependence. We
apply the delay transformation introduced in Parsons & Backer to each baseline of an interferometer to concentrate
smooth-spectrum foregrounds within the bounds of the maximum geometric delays physically realizable on that
baseline. By focusing on delay modes that correspond to image-domain regions beyond the horizon, we show
that it is possible to avoid the bulk of smooth-spectrum foregrounds. We map the point-spread function of delay
modes to k-space, showing that delay modes that are uncorrupted by foregrounds also represent samples of the
three-dimensional power spectrum, and can be used to constrain cosmic reionization. Because it uses only spectral
smoothness to differentiate foregrounds from the targeted 21 cm signature, this per-baseline analysis approach
relies on spectrally and spatially smooth instrumental responses for foreground removal. For sufficient levels of
instrumental smoothness relative to the brightness of interfering foregrounds, this technique substantially reduces
the level of calibration previously thought necessary to detect 21 cm reionization. As a result, this approach
places fewer constraints on antenna configuration within an array, and in particular, facilitates the adoption of
configurations that are optimized for power-spectrum sensitivity. Under these assumptions, we demonstrate the
potential for the Precision Array for Probing the Epoch of Reionization (PAPER) to detect 21 cm reionization at an
amplitude of 10 mK2 near k ∼ 0.2 h Mpc−1 with 132 dipoles in 7 months of observing.
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1. INTRODUCTION

Over the past decade, our theoretical understanding of how
the Epoch of Reionization (EoR) can be observed via the
21 cm transition of neutral hydrogen has advanced considerably
as a result of the growing sophistication of numerical and
semianalytic models of how ultraviolet and X-ray sources feed
ionization fronts in the intergalactic medium (Furlanetto et al.
2006; Wyithe & Loeb 2004; Santos et al. 2010; Mesinger 2010;
Morales & Wyithe 2010; Zahn et al. 2011). Three-dimensional
tomographic imaging of temperature fluctuations as they grow
and are erased by ionization will require a collecting area
comparable to a full Square Kilometer Array (SKA). However,
a statistical detection of the 21 cm reionization signal through
power-spectrum analysis should be possible with ∼0.1% of
a square kilometer of collecting area. Many first-generation
experiments aiming to measure the 21 cm power spectrum are
under construction or already observing, including the Giant
Metre-wave Radio Telescope (GMRT; Pen et al. 2009),5 the
Low Frequency Array (LOFAR; Rottgering et al. 2006),6 the
Murchison Widefield Array (MWA; Lonsdale et al. 2009),7

5 http://gmrt.ncra.tifr.res.in/
6 http://www.lofar.org/
7 http://www.mwatelescope.org/

and the Precision Array for Probing the Epoch of Reionization
(PAPER; Parsons et al. 2010).8

An interferometer accesses the three-dimensional power
spectrum of 21 cm EoR emission by measuring variation perpen-
dicular to the line of sight using samples provided by different
baselines in the uv-plane, and variation parallel to the line of
sight using the Fourier transform of frequency data (Morales
2005). One of the major complications in using an interfer-
ometer to measure the three-dimensional power spectrum of
reionization is the frequency dependence of the transverse wave-
mode sampled by a pair of antennas. This frequency dependence
causes smooth-spectrum foregrounds to appear unsmooth, as
each frequency probes fluctuations on different scales. This
effect degrades the separation that can be achieved between
foregrounds and higher spatial Fourier-domain k-modes of the
spherically averaged 21 cm reionization power spectrum Δ2

21(k),
as foreground removal techniques generally rely on the spectral
smoothness of foreground emission to isolate the 21 cm signal
(Morales & Hewitt 2004). To overcome this difficulty in sepa-
rating smooth-spectrum foregrounds from the unsmooth 21 cm
reionization signal, it has been suggested that interferometric
arrays should produce overlapping uv-coverage at multiple fre-
quencies (Bowman et al. 2009), so that the same transverse

8 http://eor.berkeley.edu/
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Fourier mode is measured across the observing bandwidth. Gen-
erating such uv-coverage requires large numbers of antennas,
creating technical and logistical challenges that are still in the
process of being addressed for current interferometric arrays.
Moreover, combining samples of the same uv-pixel from dif-
ferent baselines at multiple frequencies in a way that does not
introduce spectral structure at the level of the expected 21 cm
EoR signal can pose daunting calibration challenges.

In this paper, we present a novel approach to managing
smooth-spectrum foreground contamination that explicitly ac-
counts for the frequency dependence of the wavemodes sampled
by a baseline in an interferometer. We apply the delay trans-
form described in Parsons & Backer (2009, hereafter PB09)
separately to each baseline’s visibility spectrum to concentrate
smooth-spectrum foregrounds within the bounds of the max-
imum delays geometrically realizable on these baselines. We
show that by focusing on modes that correspond to regions in
image domain that are beyond the horizon, it is possible to
avoid smooth-spectrum foregrounds altogether. This technique
has several important advantages over traditional approaches.
Since each baseline of the interferometer can be used to pro-
vide independent measurements of the power spectrum that are
free from foreground contamination, there is no need for longer
baselines to aid in characterizing and removing foregrounds.
Instead, arrays utilizing the delay-spectrum approach can be
deployed using “maximum-redundancy” array configurations
(Parsons et al. 2012, hereafter referred to as P12), reducing the
demands on antenna number, correlator size, and image-domain
sidelobe minimization for an array of comparable sensitivity
using more traditional antenna configurations. Furthermore, the
requirements on calibration accuracy are reduced, with more
emphasis put on limiting how rapidly responses evolve versus
frequency than on the level of absolute calibration of the array
and its antenna elements. With the delay-spectrum technique,
we find that a substantial window of opportunity is opened for
measuring Δ2

21(k) at spatial wavemodes of k � 0.2 h Mpc−1.
In Section 2, we present a description of the delay transform,

showing both how smooth-spectrum foregrounds are isolated in
delay space, and that for shorter baselines, the Fourier modes
obtained through the delay transform are highly peaked toward
particular k-modes, making them effective measurements of the
21 cm EoR power spectrum. In Section 3, we describe sev-
eral important details of how the delay transform is applied
to spectra measured on each baseline of an interferometer to
effectively isolate foregrounds with minimal sidelobe contami-
nation in the region of interest for EoR. In Section 4, we apply
this technique to simulated visibilities that incorporate realistic
foreground properties, instrumental responses, and data flag-
ging. In Section 5, we present the results of our study of the
delay transform, and in Section 6 we discuss the implications of
the delay transform for instrument design relative to other fore-
ground mitigation techniques. We conclude in Section 7 with
prospects for applying this technique to actual observations.

2. THE DELAY TRANSFORM

For interferometric measurements targeting the 21 cm power
spectrum of neutral hydrogen, there are two ways to interpret
spectral frequency. For Galactic synchrotron and extragalactic
point sources (i.e., “foreground” emission), the frequency axis
reveals the intrinsic broadband spectrum of emission. For 21 cm
emission, however, frequency corresponds to the cosmological
redshift of a spectral line, and hence, a line-of-sight distance.

Actual measurements, of course, contain both types of emission.
We explore the relationship between these two interpretations
of spectral frequency, paying particular attention to result of
applying the Fourier transform to the frequency spectrum that
a single baseline measures along the frequency direction.
The ultimate conclusion of this work is that this Fourier
transformation—the “delay transform” presented in PB09—
localizes foreground emission in “delay” space, providing
access to 21 cm emission in regions uncontaminated by fore-
grounds. Furthermore, we show that for short baselines (∼30 m)
and small bandwidths (∼8 MHz), measurements of 21 cm emis-
sion in delay space can be simply interpreted as modes of the
21 cm power spectrum.

The “delay transform” refers to the Fourier transform of the
visibility spectrum measured by a single baseline along the
frequency axis; a delay transform takes a single time sample
of a frequency spectrum of visibilities from one baseline and
Fourier transforms it to obtain a “delay spectrum.” As shown in
PB09, this transform relates the spectral frequency domain to the
delay (or “lag”) domain. In delay domain, a flat-spectrum signal
that arrives at one antenna time-shifted by a delay τ relative to
another antenna appears as a Dirac delta function, δD(τ ), in the
delay spectrum of the baseline pairing those antennas. Because
emission from different regions of the sky arrive at antennas with
different relative delays, bins in delay domain can be used to
geometrically select arcs on the sky. For interferometric arrays
with wide fractional bandwidths, such as many low-frequency
21 cm reionization arrays, the delay transform can be a very
useful tool for isolating sources. It effectively uses the frequency
dependence of a baseline’s sampling of the uv-plane to make
one-dimensional images of the sky, as illustrated in Figure 1.

However, in the context of measuring cosmic reionization
using highly redshifted 21 cm emission from neutral hydro-
gen, the mapping between spectral frequency and the line-
of-sight direction makes the Fourier transform of visibilities
along the frequency direction an integral step in measuring
the three-dimensional power spectrum of reionization P21(k)
(Morales & Hewitt 2004; Parsons et al. 2012). In this context,
where the spectral variation of the sky is of paramount im-
portance, the frequency dependence of a baseline’s sampling
of the uv-plane—the same effect that gives rise to the delay
transform—becomes a nuisance, since a baseline measuring
different uv-modes as a function of frequency also measures
different k-modes. Furthermore, the frequency-dependent sam-
pling of the uv-plane introduces spectral structure in nomi-
nally smooth foreground emission, leading to “mode-mixing”
that complicates the separation of smooth-spectrum foreground
emission from the desired 21 cm reionization signal. One solu-
tion to this problem is to arrange antennas to create overlapping
uv-coverage at many frequencies, with different baselines pro-
viding samples of the same uv-mode at various frequencies.

In this paper, we propose an alternate approach that directly
treats the frequency-dependent sampling pattern of a baseline.
We examine the per-baseline approach to measuring 21 cm
reionization introduced in Parsons et al. (2012), explicitly
relating the delay transform to the cosmological line-of-sight
transform that is of importance for measuring reionization. We
then use the delay transform as a lens to help us understand how
the separation between smooth-spectrum foreground emission
and the 21 cm reionization signal is affected by the spectral
response of an interferometer. Specifically, we will show that
the geometric limit on the maximum delay at which celestial
emission can enter an interferometer sets a strict limit on the
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Figure 1. Geometric interpretation of the delay spectrum measured by an interferometer. The left plot shows how two sources with identical spectra can have differing
geometric delays (τg) owing to their positions relative to the two antennas being correlated. The right plot shows how a strictly geometric interpretation of a delay
spectrum is violated by the fact that the Fourier transform of the spectrum of each source also enters the delay spectrum centered at the appropriate τg . This is a
manifestation of the convolution expressed in Equation (11). Thick dashed lines denote the maximum possible geometric delays, as imposed by the horizon. While
the geometric delay associated with a source cannot exceed the horizon limit, sidelobes associated with the delay transform of the source spectrum do (right plot,
magenta).

(A color version of this figure is available in the online journal.)

degree to which smooth-spectrum foreground emission can
corrupt measurements of P21(k) at higher magnitude k-modes.

In Section 2.1, we present a qualitative description of the
how the delay transform relates to measurements of the 21 cm
EoR power spectrum. The goal of this section is develop an
intuitive, geometric interpretation of the delay transform, and to
introduce terminology that will recur throughout the paper. In
Section 2.2, we present a mathematical formalism for the delay
transform. We use this formalism to explicitly address how the
delay transform measures the 21 cm EoR signal (Section 2.3)
and foreground emission (Section 2.4).

2.1. A Qualitative Picture of the Delay Transform
for 21 cm Experiments

The delay transform maps flat-spectrum emission from the
sky to Dirac delta functions in delay space. Since different
regions on the sky see different physical geometric delays
between the two antennas of a baseline, the delay transform
serves as a form of one-dimensional, per-baseline “imaging,”
as illustrated in Figure 1. Importantly, there is a maximum
geometric delay, set by the length of the baseline, above which
no signal from the sky can enter. For a zenith-phased array, this
maximum delay occurs at the horizon, so we refer to it as the
“horizon limit.” This fact bears repeating, as it is crucial to the
geometric understanding of the delay transform: flat-spectrum
emission from the sky cannot enter an interferometer baseline
with a delay longer than that set by the length of the baseline.

However, emission on the sky is not generally flat-spectrum,
so delay-domain “images” are smeared by a convolving kernel
that reflects the frequency dependence of celestial emission,
instrumental responses, and the finite bandwidth used in the
delay transform. Therefore, a Dirac delta function in delay
space, corresponding to emission from a specific location on
the sky, is broadened by convolution with this kernel. Since the
kernel corresponds to the Fourier transform of any frequency
structure in the spectrum of that source (whether intrinsic or
instrumental), emission with more frequency structure will have
a broader signature in delay space. In the limit of perfectly

flat-spectrum emission, the response will return to a Dirac delta
function. If the kernel is broad enough, however, a source can
appear with non-negligible power at delays beyond the horizon
limit. This statement forms the core of the delay-spectrum
approach for isolating smooth-spectrum foregrounds from the
21 cm EoR signal. Due to its intrinsically smooth spectrum,
foreground emission will have a narrow convolving kernel, and
so will have rapidly decreasing power beyond the maximum
delay of the horizon limit. Source emission that is not spectrally
smooth, however, will create a very broad kernel in delay space,
and so will scatter power to delays well beyond the horizon
limit, regardless of that source’s actual position on the sky. For
the five simulated sources whose spectra are shown in Figure 2,
this is illustrated in Figure 3. Only the source with an unsmooth
spectrum exhibits power outside the horizon limit. With the
delay-spectrum approach, one is, in a sense, looking for the
“sidelobes” of the EoR signal in delay space that scatter power
to high delays. At these delays, the dominant source of emission
will not be foregrounds, but the EoR signal itself.

There are many issues that need to be addressed with a more
quantitative treatment of the above. In Section 2.2, we use a
more rigorous framework to describe the delay transform. In
Section 2.3, we use this formalism to relate delay modes to
k-space. This entails explicitly handling the frequency depen-
dence of a baseline’s length that gives rise to the delay transform,
allowing us to derive the point-spread function (PSF) of a delay
mode in k-space that prevents a one-to-one mapping of delay
modes to line-of-sight k-modes. In Section 2.4, we quantify the
breadth of foreground emission in delay space and the degree
to which sidelobes of foreground emission yield power beyond
the horizon limit.

2.2. Mathematical Formalism of the Delay Transform

2.2.1. Notation and Coordinates

To begin, let us define the various coordinates that we will
use throughout the remainder of the paper. A baseline of an
interferometer observes spatial Fourier modes of the sky as a
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Figure 2. Spectra of five sources at random positions on the sky that were used to generate simulated visibilities from which the delay spectra in Figure 3 were
calculated, using a model of PAPER’s primary-beam response. All but one of the sources (cyan) have power-law spectra vs. frequency.

(A color version of this figure is available in the online journal.)

Figure 3. Delay spectra measured by baselines of four different lengths for a simulated sky consisting of several celestial sources, whose spectra are shown in
Figure 2. The upper-left, upper-right, lower-left, and lower-right plots show delay spectra obtained by Fourier transforming a 60 MHz band centered at 150 MHz
with a Blackman–Harris windowing function (Harris 1978) for east–west baselines of length 32, 64, 128, and 256 m (16, 32, 64, and 128 wavelengths at 150 MHz),
respectively. Color scale denotes log10-Jy amplitude, ranging from 1 (blue) to 5 (red). As in Figure 1, emission from sources with power-law spectra remains confined
within the horizon limits (dashed vertical lines), while emission from the source with an unsmooth spectrum (top region of each panel, corresponding to the source
plotted in cyan in Figure 2) extends beyond these limits.

(A color version of this figure is available in the online journal.)
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Figure 4. Tracks sampled by baselines measuring 16, 32, 64, and 128
wavelengths (at 150 MHz), as a function of observing frequency, in (u, ν) space
(solid, bottom axis). The frequency dependence of the wavemode sampled by an
interferometer is one of the major complicating factors in foreground removal
and is also the reason that emission from celestial sources at different positions
on the sky maps to different regions of delay space. The delay transform
described in Section 2 extracts Fourier modes measured along these tracks,
rather than strictly along the frequency axis.

function of frequency, which we label with coordinates (u, v, ν).
Although these coordinates naturally express an interferometric
observation, for 21 cm emission, they represent a mix between
Fourier and real-space coordinates: u and v are Fourier compo-
nents of the transverse direction in the plane of the sky and ν
relates to the real-space, line-of-sight direction. We define η to be
the Fourier transform of ν, so that the coordinates (u, v, η) form
a three-dimensional orthogonal coordinate system. For 21 cm
emission, |u| ≡

√
u2 + v2 and η are related to the spatial Fourier

modes k⊥ and k‖ (measured in h Mpc−1) via redshift-dependent
constants of proportionality. For foreground emission, |u| and
η have no such cosmological interpretation. As such, |u| and η
are more general Fourier coordinates than k.

The frequency dependence of a baseline’s length (measured
in wavelengths) dictates that a baseline samples a sloped line
through a (u, v, ν) cube. This effect is illustrated for baselines
of several lengths in Figure 4. We define κ̂b to be a unit
vector pointing along the line sampled by baseline b. The delay
transform, which is the Fourier transform of a single baseline’s
visibility spectrum, is therefore a Fourier transform along the
κ̂b-direction. We refer to the Fourier complement of κ̂b as the
τ̂b-direction, and single value of a delay spectrum as a τ -mode.

Using this notation, the key point above is that since κ̂b is
not parallel to ν̂ (as indicated in Figure 4), τ̂b will not be
parallel to η̂. This means that τ -modes do not directly correspond
to cosmological k‖-modes. The ramifications of this fact are
discussed in Section 2.3, where we explicitly compute the PSF
of (|u|, τ )-modes in (k⊥, k‖)-space.

2.2.2. The Delay Transform

The visibility response, V, of a single baseline, assuming
that all non-geometric components of visibility phase have been
calibrated and removed, can be expressed by

V (u, v) =
∫

dl dm√
1 − l2 − m2

A(l, m)I (l, m)

× e−2πi(u l+v m+w(
√

1−l2−m2−1)), (1)

where l ≡ sin θx and m ≡ sin θy relate to angular coordinates in
the plane of the sky, A(l,m) is a windowing function describing
the spatial and spectral response of an interferometric pair of
antennas, and I(l,m) is the specific intensity. Note that this
equation is implicitly frequency-dependent, both in A(l,m) and
I(l,m), but also in the Fourier components u, v, and w. As
shown in PB09, we can re-express Equation (1) for a single
baseline as

Vb(ν) =
∫

dl dm A(l, m, ν)I (l, m, ν)e−2πiντg , (2)

where ν is spectral frequency, b is used to indicate this delay
spectrum comes from a single baseline, b, and

τg ≡ b · ŝ

c
= 1

c
(bxl + bym + bz

√
1 − l2 − m2) (3)

is the geometric group delay associated with the projection
of the baseline vector b ≡ (bx, by, bz) toward the direction
ŝ ≡ (l, m,

√
1 − l2 − m2), as illustrated in Figures 1 and 3.

The visibility-domain coordinates u ≡ (u, v,w) are related to
baseline coordinates by u = νb/c.

The Fourier transform of the visibility spectrum from one
baseline (as written in Equation (2)) along the frequency axis
yields the delay transform:

Ṽb(τ ) =
∫

dl dm dνA(l, m, ν)I (l, m, ν)e−2πiν(τg−τ ). (4)

In constrast, if we extend the definition of the visibility from
Equation (1), as done in P12, to include a Fourier transform
along the frequency axis (and ignore the bz component of a
baseline; we discuss issues arising from this simplification in
Section 3.2), we have

Ṽ (u, v, η) =
∫

dl dm dνA(l, m, ν)I (l, m, ν)e−2πi(u l+v m+η ν),

(5)

where η is, as previously described, the Fourier transform of
frequency ν, and is orthogonal to u and v. We have now explicitly
noted the frequency dependence of A(l,m) and I(l,m).9 Since
u, v, and η are directly related to k-modes of a cosmological
volume, Ṽ is a direct probe of the 21 cm power spectrum.
However, as we have stated, the transform in Equation (5)
cannot be calculated from a single baseline’s visibility spectrum,
due to the frequency dependence of u and v sampled by one
baseline.

We wish to explore the effects of using Ṽb(τ ) (Equation (4))
from one baseline as a substitute for equation Ṽ (u, v, η)
(Equation (5)), which requires multiple baselines of data. Put
another way, we ask: what is the effect of using delay modes to
measure k-modes? The result will be that Ṽ (τ ) has a PSF that
mixes Fourier modes along the η̂-direction. In order to derive
the effects of mode-mixing, we will directly examine the result
of taking a Fourier transform along the direction inherently

9 In P12, it was noted that this definition ignores the frequency dependence of
(u, v), which vary by as much as 6% over an 8 MHz bandwidth. It was briefly
argued that, given the configuration of most EoR experiments, the k⊥
component of k that arises from (u, v) contributes negligibly to |k|, so that this
approximation does not substantially affect sampling of P21(k), nor does it
change the derived sensitivities. The purpose of this present work is to explore
the effects of this frequency dependence in greater detail.
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sampled by a baseline—a direction we have called κ̂b. We can
now express this direction as a unit vector given by

κ̂b ≡ νν̂ + bxν

c
û + byν

c
v̂√

ν2 + (bxν/c)2 + (byν/c)2
. (6)

Similarly, the τ̂b-direction that is the Fourier complement of κ̂b

can also be expressed in terms of previously defined coordinates:

τ̂b =
1
ν
η̂ + c

bxν
l̂ + c

byν
m̂√

(1/ν)2 + (c/bxν)2 + (c/byν)2
. (7)

The τ̂b-direction deviates from the η̂-direction with a component
in the image plane that depends on baseline length. This
component causes a τ -mode to sample different η-modes at
different (l, m)-coordinates. It is the projection of τ̂b along the
angular sky coordinates that gives rise to the delay transform’s
mapping of different points on the sky to different geometric
delays.

2.3. The PSF of τ -modes in k-space

We now move to determining the PSF of delay modes
in k-space to examine the degree to which they may be
regarded as samples of the three-dimensional power spectrum
of reionization. A single delay mode, Ṽb(τ0), has an extended
shape in both the k⊥ and k‖-directions. We begin with the PSF of
a τ -mode in the k⊥-direction, or equivalently, in the uv-plane.
This PSF, which we will call Wτ,b(u, v), reflects the inherent
width of the antenna beam response in the uv-plane, Ã(u, v, ν),
convolved by the frequency dependence of the uv-coordinate
sampled by a baseline b:

Wτ,b(u, v) ≡
∫ ν0+B/2

ν0−B/2
dνÃ

(
u − bxν

c
, v − byν

c
, ν

)
× e−2πi(ν+bxν/c+byν/c)τ , (8)

where ν0 and B are the center and width of the frequency
band used in the delay transform, respectively. Over the largest
(∼8-MHz) bandwidths that fit within the evolutionary
timescales of the 21 cm EoR signal (Wyithe & Loeb 2004;
Furlanetto et al. 2006), the uv-modes sampled by V (κ) are lo-
calized in the uv-plane. For baseline lengths less than 300 m
and for k‖ � 0.01 h Mpc−1, the 6% maximum variation in (u, v)
over this bandwidth is much smaller than the scales over which
Δ2

21(k) evolves. Hence, the PSF broadening in the k⊥-direction
that results from the slight difference between uv-coordinates
sampled at the upper and lower edges of the band has a negligible
effect on the inferred value of Δ2

21(k). The Fourier transforma-
tion of V (κ) to Ṽ (τ ) does not affect which uv-modes were
inherently sampled, and hence the PSF of Ṽ (τ ) remains peaked
in the k⊥-direction.

Examining the PSF of τ -modes in the k‖-direction requires
greater attention. At first blush, one might expect the breadth of
τ -modes in the (l, m)-directions (see Figure 5) to cover such a
broad range of η-modes that the PSF of Ṽ (τ ) in k-space would be
irretrievably compromised. On closer examination, however, we
see that the extent of any τ -mode in (l, m)-domain is controlled
by the angular size of the baseline’s primary beam (A(l, m, ν) in
Equation (2)), which is fundamentally limited to be zero outside
of −1 � l, m � 1 by the horizon. As illustrated by the vertical
extent of delay bins in Figure 5, any single delay bin would

probe (i.e., mix) all η-modes, were it not for the hard boundary
of the horizon limit. This statement is another way of expressing
the key fact that the horizon sets a fundamental maximum delay
for signals on the sky.

As a result, we may consider the width of a τ -mode in the
η̂-direction to be the inherent 1/B width set by the bandwidth
B used in the Fourier transform, convolved by the PSF of
Ã(l, m, η) in delay coordinates. This PSF, which we will call
Wτ,b(η), can be computed explicitly by integrating Ã(l, m, η)
along iso-delay contours (see Figure 6):

Wτ,b(η) ≡
∫

dl dm Ã(l, m, η)δD

(
bxl

c
+

bym

c
+ η − τ

)
,

(9)
where δD is the Dirac delta function. Convolving by Wτ,b

captures how celestial emission that is uniformly distributed
across the field of view with a characteristic spectrum is
measured by a baseline of fixed physical length; the measured
delay spectrum represents an integral over the sky of the inherent
delay spectrum of the emission entering at a different delay for
each point on the sky, multiplied by the primary-beam response
in that direction. Hence, as shown in Figure 5, Wτ,b(η) accounts
for the fact that the η-mode sampled by any chosen delay bin
changes linearly across the sky with a slope that depends on the
baseline length.

Because Wτ,b captures how baseline length and the spatial and
spectral variation of the primary beam modifies the inherent de-
lay spectrum of foreground emission, it is the ultimate metric
for judging which baseline lengths and primary-beam response
patterns avoid scattering smooth-spectrum foreground emission
into k-modes that are of interest for measuring 21 cm reion-
ization. The two components of Wτ,b—the Fourier transform
of the primary beam along the frequency direction Ã(l, m, η)
illustrated in gray scale in Figure 5, and the changing slope of
delay-bin responses in (l, m, η)-space illustrated with colored
lines—together determine which delay bins are corrupted by
foregrounds (the shaded regions in Figure 5). By limiting the
slope of delay-bin responses by using shorter baseline lengths,
by designing antennas with spectrally smooth primary-beam re-
sponses to limit their extent in the η̂-direction, and (somewhat
less critically) by limiting the spatial breadth of the primary-
beam response in the (l, m)-direction, it is possible to reduce
the width of Wτ,b, and thereby reduce the level of foreground
corruption in k-modes of interest. It is worth noting that in order
to precisely determine what amplitudes of Wτ,b are acceptable,
future work will be needed to determine the inherent brightness
and spectral smoothness of foregrounds.

If, for a moment, we take A(l, m, η) to be unity across the
entire sky, we may set an upper bound on the width of a τ -mode
in the k‖-direction by using the slope of a baseline’s response in
(l, m, η)-space, imposing the horizon limits on (l, m), and then
converting η to k‖ using a cosmological scalar, Y (z) = dk‖/dη,
that relates a frequency interval to a comoving physical size (see
Furlanetto et al. 2006; Parsons et al. 2012, for computations of
Y). Without loss of generality, we adopt a strictly east–west
baseline orientation such that m can be neglected:

Δk‖ � Δl
dk‖
dl

= Δl
dk‖
dη

dη

dl
= ΔlY

|b|
c

. (10)

For a baseline length of |u| = 20 at 150 MHz (z = 8.5),
we get Δk‖ ≈ 0.13 h Mpc−1 using the most conservative
choice of Δl = 2, for emission entering from the entire sky;
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Figure 5. Response in (l, η)-coordinates of delay bins measured by baselines of four different lengths, all chosen, without loss of generality, to be in the east–west
direction. The gray-scale shading in the center of each plot shows the response of the PAPER primary beam, integrated over the direction perpendicular to the
baseline (i.e., in the m-direction, along the delay bins indicated in Figure 6), and Fourier transformed in frequency over an 8 MHz band (centered at 150 MHz) at
each l-coordinate to yield

∫
Ã(l, m, η)dm. Gray scale indicates response relative to peak amplitude in log10 mK2 units, ranging from 0 (black) to −2 (white). In this

space, the beam spans a broad range of l (it has a wide FWHM) but is fairly narrow in η (it is very smooth in frequency). Overlaid on the beam representation are the
regions of sensitivity of delay-spectrum bins for baselines of length 32 (upper-left), 64 (upper-right), 128 (lower-left), and 256 (lower-right) m, corresponding to 16,
32, 64, and 128 wavelengths, respectively. The area between two colored lines corresponds to the region to which a single τ -mode of that baseline’s delay spectrum is
sensitive. As in Figure 1, the thick dashed line denotes the horizon cutoff. Each τ -mode probes a range of η-values across the field of view, although shorter baseline
lengths reduce the degree to which delay bins mix η-modes. To aid the eye, we have shaded τ -bins that intersect the primary-beam response at greater than 1% of
peak amplitude, indicating delay modes where instrumental response scatters perfectly smooth-spectrum celestial emission. For each baseline length, there also exist
unshaded delay bins where significant power can only exist if celestial emission itself has structure at sufficiently high η (i.e., it has rapidly fluctuating frequency
structure). Since foreground emission at these frequencies is predominantly smooth-spectrum (Furlanetto et al. 2006), this approach allows the dominant foregrounds
to the 21 cm EoR signal to be avoided by employing antennas with smooth primary beams vs. frequency (to constrain the gray-scale width in the η̂-direction) and by
employing shorter baselines that minimize the mixing of η-modes within delay bins (by flattening the slope of the colored lines).

(A color version of this figure is available in the online journal.)

for a narrower primary beam, Δl can be somewhat smaller.
The final step uses dη/dl = |b|/c and comes from
the fact that the length of a baseline sets the slope of
that baseline’s uv-sampling pattern versus frequency. For
comparison, the width of Wτ,b in the uv-plane for PA-
PER antennas over an 8 MHz bandwidth is approxi-
mately 50 times narrower (Δk⊥ ∼ 0.002 h Mpc−1), con-
firming that the width of Wτ,b is predominantly in the
η̂-direction. Figure 7 shows Wτ,b(η), the PSFs in the η̂-direction,
for several baseline lengths, computed explicitly using the spa-
tial and spectral primary-beam response of PAPER elements.
Since Δ2

21(k) is expected to evolve on log k scales (McQuinn
et al. 2007; Trac & Cen 2007), the width of τ -modes in the
k‖-direction only becomes important on scales of Δk ∼ k. It is
worth noting that although adjacent τ -bins may appear to have
overlapping response in k-space, the modes sampled are actu-
ally statistically independent, as shown by their orthogonality
in (l, m, η)-space in Figure 5.

2.4. Mapping Foregrounds to k-space

In the previous section, we reiterated how, for a substantial
region of k-space, τ -modes may be considered direct measures
of P21(k), owing to their peaked response in k-space (Parsons
et al. 2012). Using a delay-spectrum methodology, we showed

how the PSF of τ -modes in k-space can be computed explicitly,
and we set upper bounds on the breadth of the PSF by invoking
geometric limits on the delay at which celestial emission can
enter an interferometer. However, the most powerful aspect of
the per-baseline, delay-spectrum approach to measuring 21 cm
EoR concerns the isolation of smooth-spectrum foreground
emission described in Section 2.1. In this section, we use the
formalism of Section 2.2 to identify a threshold in delay space
beyond which τ -modes are uncorrupted by smooth-spectrum
foreground emission, making them effective probes of Δ2

21(k).
To begin, let us consider foreground emission consisting of

a discrete set of point sources. Neglecting non-geometric delay
terms, we translate the frequency-domain visibility response to
delay domain for foreground emission consisting of a discrete
set of point sources:

Ṽb(τ ) =
∫ ∞

−∞

[∑
n

A(ν, ŝn)Sn(ν)e−2πντn

]
e2πiντ dν

=
∑

n

[Ã(τ, ŝn) ∗ S̃n(τ ) ∗ δD (τn − τ )]. (11)

Here, we see a measured visibility expressed as a discrete sum
over point sources, each entering at a different delay with a dif-
ferent inherent frequency spectrum. The delay transform maps
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Figure 6. Delay bins (alternating shaded/unshaded regions) resulting from the delay transform applied to an 8 MHz band of data from east–west oriented baselines
of length 32 (upper-left), 64 (upper-right), 128 (lower-left), and 256 (lower-right) m, corresponding to 16, 32, 64, and 128 wavelengths, respectively. Bin responses
are shown projected over the spatial response of the PAPER primary beam at 150 MHz. Color scale illustrates normalized power response, ranging from 0 (blue) to
1 (red) at zenith. Note that the number of delay bins shown overlapping the field of view in this figure corresponds to the number of shaded bins in Figure 5 that
indicate regions where perfectly smooth-spectrum celestial emission can enter a delay mode as a result of instrumental response.

(A color version of this figure is available in the online journal.)

Figure 7. Top: the effect of the delay-transform PSF on measured power spectra of 21 cm reionization, using model power spectra at various stages of reionization
from Lidz et al. (2008). Bottom: the k‖ response (Wτ,b(η), from Equation (9)) of a delay-transform bin arising from the sloped response in k‖ shown in Figure 5,
integrated over the primary-beam response of a PAPER dipole, at bins centered at k‖ = 0.25, 0.5, and 1.0 h Mpc−1 (dotted, dashed, and solid plots, respectively).
Color indicates baseline length in wavelengths at 150 MHz of 16 (blue), 32 (green), 64 (red), and 128 (cyan). The width of the response of a delay-transform bin
arises from the inherent scaling of uv-coverage with frequency, or equivalently, from the width of the primary beam in delay space. Only for the longest baselines does
mode-mixing substantially affect measurements of the power spectrum of high-redshift 21 cm emission.

(A color version of this figure is available in the online journal.)
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flux from each celestial source to a Dirac delta function, δD ,
centered at the corresponding group delay, convolved by a ker-
nel representing the Fourier transforms of frequency-dependent
interferometer gains, Ã(τ, ŝn), and the inherent spectrum of each
source, S̃n. We should note that the reason for examining a point-
source foreground is entirely pedagogical and does not reflect
a loss of generality; we could just as well have considered an
integral over S(l, m, ν) and have computed the delay corre-
sponding to each (l, m)-coordinate explicitly.

As derived in the previous section, there is a geometric
maximum geometric delay, τmax, at which flux can enter an
interferometer. For a primary-beam response such as PAPER’s
that covers the entire sky, τmax is bounded by the horizon.
Beyond this maximum delay, any observed flux must be the
result of sidelobes of the Ã ∗ S̃n kernel convolving δD(τ − τn)
for some −τmax � τn � τmax, as shown in Figure 3. Ignoring
the antenna primary-beam response Ã for a moment, we can
see that for sources with sufficiently smooth spectra, S̃(τ ) will
be quite narrow, and therefore, their contribution to foreground
emission will be narrowly confined around τn. For emission
that is unsmooth versus frequency, such as the expected 21 cm
reionization signal, S̃(τ ), scatters power well beyond τmax, and
as shown in Section 2.3, these delay modes beyond the horizon
represent samples of P21(k).

The key to managing foregrounds using the delay-spectrum
technique is for both foreground emission and instrumental
responses to be sufficiently smooth in the κ̂b-direction that fore-
ground emission remains tightly bound around the maximum
delays in delay space. The width of Ã ∗ S̃ in delay space, along
with the baseline length that determines τmax, fundamentally
determines which k‖-modes are corrupted by foregrounds. For-
tunately, the dominant foregrounds to the 21 cm reionization
signal are expected to be spectrally smooth, with the possible
exception of polarized galactic synchrotron emission, whose
treatment we will discuss briefly in Section 6, but will largely
defer to a future paper. In Section 4, we will examine the fore-
grounds in greater detail in the context of the delay transform
using simulations.

Besides baseline length (where, barring instrumental system-
atics, shorter is better10), the instrument design parameter that
is most important to the success of the delay transform is the
smoothness of A(l, m, ν). Furthermore, as shown in Figure 6,
delay modes have projections along l, m, and ν, making it
imperative that A(l, m, ν) be both spatially and spectrally
smooth, since spatial and spectral responses of an interferom-
eter are commingled in the delay-spectrum approach. To avoid
scattering smooth-spectrum foregrounds into delay bins beyond
the geometric horizon limit, the spatial structure of the primary

10 Interestingly, the delay-spectrum foreground isolation approach can also
operate effectively on autocorrelations to reveal unsmooth spectral features.
Step functions in autocorrelation spectra caused by the global 21 cm
reionization signature have been ruled out (Bowman & Rogers 2010), and
current models favor the prolonged evolution of the global 21 cm signal.
However, a fact that has been widely overlooked is that with adequate mastery
of systematics and foreground removal, autocorrelations can also constrain
Δ2

21(k). This is possible because the delay spectrum of an autocorrelation
yields samples of k-modes where k⊥ is 0, but k‖ can still access k-modes of
interest. The closest acknowledgement of this prospect in the literature comes
from Bittner & Loeb (2011), where they discuss the possibility of sharp
spectral features in autocorrelation spectra arising from fluctuations in the
average temperature and ionization fraction as a function of redshift. The
sensitivity requirements for sampling Δ2

21(k) via autocorrelations are derived
from the same sensitivity calculations as for cross-correlations in P12. While
the systematics of autocorrelations can be more difficult to tame than for
cross-correlations, this approach to detecting reionization is an interesting one.

beam cannot evolve rapidly over the frequency bands used in the
delay transform. Frequency-dependent sidelobes can be particu-
larly problematic, especially for larger dishes where the change
in dish diameter over an 8 MHz bandwidth can be greater than
a wavelength.

A traditional antenna metric that particularly succinctly
captures these constraints is the frequency dependence of the
standing-wave ratio (SWR, see, e.g., Chapter 10-6 of Kraus &
Carver 1973). The amplitude of spectral features in the SWR
for the antenna signal path must be kept sufficiently small such
that, when the antenna response multiplies the power density
of correlated foreground emission between two antennas, the
leakage into delay modes of interest is much smaller than
the expected 21 cm reionization signal. Coarsely, the most
straightforward way to achieve this is by limiting standing waves
in the system to scales larger than the bandwidth used in the
delay transform. This can be done by limiting the geometric
size of the antenna element so that the light crossing time of
the aperture is much smaller than the delay scales of interest,
and by ensuring proper termination of long transmission lines.
If all other smoothness constraints are met, it can also be
advantageous to limit the angular size of the primary beam,
which both improves sensitivity (Parsons et al. 2012) and
shortens the effective length of the baseline in delay space,
making a longer baseline behave as a shorter one, as given by the
following relation between the maximum delay τmax associated
with smooth foreground emission and the maximum angle from
zenith θmax at which a primary beam exhibits response:

τmax = |b| sin θmax/c. (12)

In practice, however, foregrounds are very bright, and designing
antenna elements with primary-beam responses that attenuate
foregrounds to below the 21 cm reionization signal level outside
of θmax may not be achievable while maintaining the spectral
smoothness constraint mentioned above.

Another important instrument design choice that affects the
efficacy of the delay transform is the total correlated bandwidth
of the interferometer. Although the Fourier transform used for
generating samples of Δ2

21(k) is bounded to ∼8 MHz by the
expected rapid evolution of the peak reionization signal versus
redshift, the entire effective bandwidth of the instrument can
be used in the delay transform for the purpose of modeling
and removing foreground emission. This is possible because
smooth-spectrum foreground emission can be coherently added
over very large bandwidths. As the bandwidth used in the delay
transform approaches the observing frequency, the resolution in
delay-domain approaches the imaging resolution of synthesis
imaging. Enhanced delay-domain resolution can make it possi-
ble to model and remove foreground near to the horizon with
finer control than is possible with the narrow bandwidths used in
the cosmological transform. In addition, wider bandwidths im-
prove foreground sensitivity for the purpose of removing extrap-
olated foregrounds in bands of interest. Finally, as will be dis-
cussed in Section 3, wide bandwidths improve the deconvolution
process that is used to compensate for poorly sampled frequency
channels with high radio frequency interface (RFI) occupancy.

3. IMPLEMENTATION DETAILS

In this section, we examine some critical details in the
implementation of an analysis pipeline based around the delay-
spectrum technique for foreground avoidance. In particular,
we describe how data flagging can be accommodated without
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drastically compromising foreground containment, and how
measurements are binned and coherently added to improve
sensitivity.

3.1. Reducing Sidelobes of Foregrounds Arising from
Frequency-domain Flagging

Extended sidelobes in delay space can have a variety of
causes beyond unsmooth intrinsic source spectra. Of particular
concern are unsmooth spectral responses introduced by flagging
RFI-contaminated data. Parsons & Backer (2009) highlighted
how deconvolution algorithms such as CLEAN (Högbom 1974)
can effectively compensate for the effects of flagged data.
Because foreground signals are coherent over wide bandwidths,
we apply the delay transform and deconvolution over the entire
observing band to produce the best estimate of the group delay
and spectral-shape convolution kernel associated with sources.
CLEAN components in delay space are restricted to lie within
the maximum delays imposed geometrically by the horizon.
We then subtract the wide-band deconvolved foreground model
from the measured visibilities to suppress the scattering of
foreground emission off of unsmooth sampling weights relating
to RFI flagging. In essence, delay-space CLEAN is a direct
analog of the image-domain modeling proposed for foreground
removal (Paciga et al. 2011; Datta et al. 2009). The difference
here is that it is acting per-baseline, and that, in addition to
selecting CLEAN components in delay bins that map to image-
domain coordinates, delay-space CLEAN is also restricted to
models that produce smooth spectral responses.

Band edges also cause extended sidelobes in delay-domain
spectra. To mitigate these effects in the work presented here,
we use a three-tap, 100-channel Polyphase Filter Bank (PFB;
Vaidyanathan 1990) with a Blackman–Harris window (Harris
1978) to perform the delay transform. The frequency-domain
sin x/x response of the PFB in this application trades some
locality in the frequency domain in order to improve filter
steepness in the D-domain. This is acceptable because the
PFB nonetheless strongly weights data from the band center
in frequency domain, and the filter steepness in delay domain is
critical for accessing k-modes of interest.

3.2. Gridding and Integration

In order to build sensitive measurements, it is necessary to co-
herently add measurements that sample the same Fourier modes
before samples of independent Fourier modes are squared and
combined. In order to represent samples of the same sky sig-
nal, baselines must sample the same (u, v,w)-coordinate at
the same sidereal time. Of course, there is a coherence in-
terval in (u, v,w, t)-space, whose width depends on instru-
mental parameters, where samples effectively add in-phase.
Within a frequency interval where the primary beam does not
evolve substantially, the width of the coherence interval in the
uv-plane is determined by a PSF that is the Fourier transform of
the primary-beam response in (l, m) sky coordinates. This PSF
can be used to determine optimal weights for gridding mea-
surements into uv-bins (Morales & Matejek 2009). Neglecting
the time dependence of a baseline’s uv-sampling (which is ac-
counted for in gridding), the time interval over which observa-
tions may be considered to be of the same sky relates to how
long the primary beam illuminates the same region of sky. The
width of the primary-beam response in the east/west direction
determines the weighting for adding observations from differ-
ent sidereal times into time bins. For PAPER, these independent
time bins are spaced approximately 2 hr apart.

Choosing a gridding interval along the w-direction is some-
what more involved. While many arrays are configured to be
nearly isoplanar relative to a zenith pointing, it is nonetheless
the case that within a 2 hr observation (the binning time interval
suggested for PAPER), baselines phased to a zenith-transiting
phase center will have an non-negligible and time-dependent
projection along the w-direction. The phase offset associated
with this w term can be compensated for at phase center by
projecting observations at various w-coordinates down to the
w = 0 plane, and hence, the same w bin. However, as is well
studied in context of standard interferometric imaging, the spa-
tial dependence of this phase offset causes observations that are
projected from different w-coordinates to decoherent from one
another as a function of distance on the sky from phase center.
This problem is exacerbated by longer baseline lengths. As we
will discuss below, we suggest that it is desirable to add entire
spectra together with uniform weighting versus frequency. This,
unfortunately, is not compatible with the W-projection technique
that has come to be the standard method for compensating for a
spatially dependent phase term (Cornwell et al. 2005).

The other option for maintaining uniform weighting across
the band in the face of non-zero w terms is to define an interval
over which spatial decoherence from w has a negligible effect on
the resulting measurement, and then to use this interval to grid
in w. A reasonable scale for defining a grid in w is the point at
which phase errors at the half-power point of the primary beam
approach a radian. For a PAPER beam radius of ∼30◦, this
interval is approximately 1.2 wavelengths. Unfortunately, given
that a baseline of length 16 wavelengths traverses an interval of
Δw = ±4 over the course of a 2 hr observation, gridding in w
can substantially reduce integration time within time bins.

The frequency dependence of an array’s primary-beam re-
sponse and uv-sampling allows visibilities at different fre-
quencies to be coherently integrated for different amounts of
time. Frequency-dependent gridding can substantially compli-
cate delay-spectrum analysis, where one would prefer to treat
measurements uniformly at all frequencies within the band used
in the delay transform, and ideally over even wider bandwidths,
in order to improve the performance of the wide bandwidth,
delay-domain cleaning described in Section 3.1. For this rea-
son, we examine a two-stage gridding process, wherein entire
frequency spectra for baselines are first accumulated into time
bins on the basis of the narrowest coherence interval within the
band (typically at the highest frequencies). The results of this
first stage of accumulation can then be used for wide-bandwidth
cleaning and smooth foreground extraction. At this point, only
measurements that add in-phase will have been accumulated,
but some frequencies, particularly the lower ones, will not have
been accumulated for as long as they might. Since the 21 cm
reionization signal will generally be examined within ∼8 MHz
sub-bands over which the cosmological signal is not expected to
evolve substantially, one can achieve better sensitivity by further
accumulating each of these smaller cosmological sub-bands into
(u, v,w, t)-bins using coherence intervals determined only for
the frequencies within the sub-band. We treat samples at differ-
ent frequencies within a sub-band uniformly, as the difference
in coherence length is relatively minor within a sub-band.

It is worth noting that the gridding scheme presented here
for the delay-spectrum technique differs substantially for other
schemes that have been recently presented in the literature
(e.g., Bowman et al. 2009; Vedantham et al. 2012) in that
within an 8 MHz sub-band, every frequency channel has been
formed from the same weighted sum of constituent baselines.
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Figure 8. Predicted PAPER 132 power-spectrum sensitivity from P12 (dotted black), re-plotted to show binning intervals in k, and modified to only include contributions
at each k-value from baselines that do not show foreground corruption there, is overlaid on noiseless simulations of contamination by smooth-spectrum foreground
emission observed by baselines of length 16 (blue), 32 (green), 64 (red), and 128 (cyan) wavelengths at 150 MHz. See Section 4 for simulation details. Simulated
21 cm reionization power spectra from Lidz et al. (2008), with ionization fractions of 0.02, 0.15, 0.21, 0.54, 0.82, 0.96, (black curves, top to bottom, respectively, on
plot right) are also shown, projected to redshift 7.9, corresponding to 160 MHz. It should be noted that these predicted power spectra are considerably more pessimistic
than those used in Beardsley et al. (2012). Judicious use of windowing functions produces falloff in foreground emission at a characteristic scale that depends on
baseline length. The rise of foreground emission at higher k is not noise, but rather is the result of sidelobes of smooth-spectrum foreground emission that are not fully
suppressed by the windowing and deconvolution steps used to compute the delay spectrum, multiplied by the k3 factor in Δ2(k).

(A color version of this figure is available in the online journal.)

That is, two baselines must sample the same (u, v,w, t)-bin
at the same frequency to be added together; we do not combine
measurements of the same bin that come from different fre-
quencies. In essence, binning along (u, v) within each sub-band
is done according to a physical baseline length (e.g., meters),
rather than the frequency-dependent units that (u, v) represent.

4. SIMULATING FOREGROUNDS AND REIONIZATION
IN DELAY SPECTRA

In order to examine in detail how foregrounds behave under
the delay transformation, we construct a sky model that con-
sists of the foreground components discussed below, emulating
both their angular distribution on the sky and their expected
evolution versus frequency. We produce simulated measure-
ments of this sky by applying the response of our current best
model of the PAPER primary beam and summing across the
spatial response of the frequency-dependent fringe pattern
for baselines of lengths 16, 32, 64, and 128 wavelengths at
150 MHz. To the resultant visibility spectra, we add Gaussian
noise corresponding to a predicted frequency-dependent system
temperature. The system temperature used assumes contribu-
tions from the galactic synchrotron sky temperature (∼400 K
at 150 MHz in a colder region of the sky) and a flat-spectrum,
100 K receiver temperature. This system temperature is then
integrated down using integration time and contributions from
multiple baselines to a noise level of a fiducial 132 antenna,
200 day PAPER observation. The details of such an observation
are detailed in P12, although that predicted sensitivity has been
modified here so baselines only contribute to measurements at
k-values that, on the basis of the simulation work in this section,

they do not exhibit foreground contamination. The modified
sensitivity curve is illustrated with a dotted line in Figure 8.

In this simulation, we assume ideal bandpass calibration. In
practice, the availability of strong calibrator sources and the
engineered smoothness of passbands on the spectral scales of
interest make departures from this assumption of negligible con-
sequence. Of greater concern is the possible presence of un-
modeled departures from smooth spectral responses introduced
through imperfections in the analog signal path such as cable
reflections and cross-talk. For example, cable reflections can in-
troduce an echo of the original signal at a time delay much larger
than is geometrically possible for a given baseline length, effec-
tively scattering smooth-spectrum foreground emission to much
higher delay modes. However, addressing systematics such as
these are beyond the scope of this paper.

Finally, we flag data to imitate the flagging used to excise RFI
in observations from PAPER’s deployment in South Africa. The
distribution of flagging is modeled from actual observations. The
most substantial flagging occurs in a band near 137 MHz that
is persistently occupied by transmissions from the Orbcomm
satellite constellation.

4.1. Model Components

4.1.1. Galactic Synchrotron Emission

Our simulation includes a modeled contribution from galac-
tic synchrotron emission, including both the expected spectral
and spatial variation of the signal. The spatial structure of galac-
tic synchrotron emission was taken from the all-sky continuum
survey at 408 MHz by Haslam et al. (1982). This map was
extrapolated to frequencies in the 100–200 MHz band using
a ν−2.5 power law of brightness temperature versus frequency,
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making the explicit assumption that synchrotron emission on the
angular scales of interest varies uniformly with frequency. Using
this sky model, we apply the simulated primary-beam response
of PAPER antennas at 150 MHz and simulate the phase and
amplitude of visibilities measured by baselines of the lengths
listed above. These simulated visibilities include the effect of
a baseline’s changing uv-sampling versus frequency, as well as
the changing sky brightness versus frequency.

To improve the computational tractability of the simulation,
the frequency dependence of the primary beam is not included
for synchrotron emission, although it is for the point-source
foreground component described below. While the spectral
variation of the primary beam impacts how foregrounds appear
under the delay-spectrum transformation, we argue that the
point-source component of this simulation suffices to test the
interaction of foregrounds with the spectral and spatial variation
of the primary beam. The galactic synchrotron component of the
foreground simulation is instead designed to explore how the
frequency dependence of uv-sampling interacts with a steep-
spectrum foreground with spatial structure that decreases rapidly
toward smaller angular scales.

Our fiducial observations are for east–west oriented baselines
measuring a colder patch of sky centered near α =03:00,
δ = −30:00, with observing parameters chosen to match those
of the PAPER deployment in South Africa at JD2455746.8.

4.1.2. Point Sources

A model point-source foreground is generated assuming
random placement on the sphere. Source counts were generated
from a power law in source counts versus source strength at
150 MHz, with a power-law index of −2.0, normalized to one
100 Jy source per Jy flux interval per 10 sr. This distribution was
determined empirically from pixel counts in PAPER maps and
yields a total of 10,000 sources with strengths from 0.1 Jy to
100 Jy. Each source’s frequency spectrum was also modeled as a
power law, with spectral index drawn from a normal distribution
centered at −1.0, with a standard deviation of 0.25. Each source
spectrum was multiplied by a model of the frequency-dependent
primary-beam response of PAPER antennas at the source’s
topocentric position.

Ionospheric refraction was included for each source, with an
apparent angular offset at 150 MHz drawn from a zero-centered
normal distribution with standard deviation of 1 arcmin. We use
a single angular offset per source; since the delay transform is
linear, a single net angular offset models the offset averaged
over many integrations. Using the full angular offset with rms
of 1 arcmin demonstrates a worst-case model of ionospheric re-
fraction. Apparent offsets were extrapolated to other frequencies
using the characteristic ν−2 dependence of refraction angle ver-
sus frequency. Frequency-dependent refraction angles introduce
a phase offset versus frequency whose magnitude is determined
by the length of the projection of a baseline perpendicular to the
source direction. Generally, the smooth variation of phase across
the spectrum resulting from ionospheric refraction is expected
to have only a minor effect on the breadth of the delay spectrum
of a source; we include it in the simulation for completeness.

5. RESULTS

Applying the delay-transform foreground isolation technique
described in Sections 2 and 3 to the simulated visibilities
described in Section 4, we produce the results illustrated in
Figure 8. In this figure, we see that foregrounds are effectively

Figure 9. Δ2(k) vs. frequency and log10(k), computed using the delay transform,
for simulated measurements of a 16-wavelength baseline at 150 MHz. Different
frequency values denote the centers of the various 8 MHz sub-bands over which
the delay transform is applied. As detailed in Section 4, these simulations
include the effects of noise, data flagging, and foreground emission consisting
of galactic synchrotron emission and extragalactic point sources with power-law
spectra. Color denotes log10(mK2), ranging from 1 (blue) to 6 (red). In this plot,
the horizon limit on the geometric delay of celestial emission is clearly seen
in the rapid falloff of bright foreground emission vs. k. The subsequent rise in
temperature vs. k is the result of k3 dependence of Δ2(k) multiplying flat thermal
noise.

(A color version of this figure is available in the online journal.)

isolated below k ∼ 0.2 h Mpc−1 for baselines of length |u| <
16. This cutoff lies above the inherent cutoff imposed by the
8 MHz bandwidth used in the delay transform, which falls at
k ≈ 0.05 h Mpc−1, and reflects an added breadth of foreground
contamination that results from the changing baseline response
versus frequency that is explicitly addressed in the delay-
transform technique.

Given the k-domain extent of smooth-spectrum foregrounds
and the inherent frequency dependence of the PAPER primary
beam, we find that the mode-mixing resulting from the pro-
jection of delay modes along the angular direction substantially
compromises measurements at smaller k-modes, particularly for
longer baselines. However, the effect of this mode-mixing is still
bounded by the maximum geometric delay for a baseline of a
given length. The inherent breadth of typical power-law source
spectra, the angular distribution of point-source and galactic syn-
chrotron foregrounds, refraction through the ionosphere, and the
simulated response of the PAPER primary beam do not appear
to substantially broaden foreground contamination beyond this
limit. The dependence of this limit on frequency is illustrated in
Figure 9, and its dependence on baseline length is illustrated in
Figure 10.

Following the calculations in P12 for the sensitivity of a
132-element array in a configuration consisting of 12 columns
of 11 closely packed antennas, accounting for the fact that base-
lines cannot contribute sensitivity at k-values where they show
foreground contamination and binning in intervals of log k = 1,
we find that 132 PAPER antennas achieve adequate sensitiv-
ity in 200 days of observation to constrain fluctuations of
30 mK2 at the 3σ level near k ≈ 0.2 h Mpc−1. As shown in
Figure 8, the foreground isolation obtained through the delay
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Figure 10. Δ2(k) vs. k⊥ and k‖, derived from the same simulations as in Figure 9,
but using a single delay-transform band centered at 150 MHz. Color denotes
log10(mK2), ranging from 1 (blue) to 6 (red). In this plot, the broadening of
foreground contamination at lower k‖ increases as a function of k⊥, reflecting
how the horizon limit in delay space increases as a function of baseline
length. The “wedge” of foreground contamination illustrated here parallels the
simulated foreground contamination found in Datta et al. (2010) and Morales
et al. (2012), and is indicative of the fundamental shape of smooth-spectrum
foreground emission as observed by an interferometer that has a frequency-
dependent sampling of the uv-plane.

(A color version of this figure is available in the online journal.)

transform combines with the predicted sensitivity curve (scaling
as k5/2) to open a window on shorter baselines for accessing
k-modes of reionization that are uncorrupted by smooth-
spectrum foregrounds near k ≈ 0.2 h Mpc−1.

Extending these simulations to a future array with identical
antenna properties but with 100 times the sensitivity, we see in
Figure 11 that the measured power spectrum of 21 cm EoR
fluctuations reproduces the fiducial input model despite the
broadening of the PSF shown in Figure 7 that results from the
frequency dependence of baseline length. The original input
model falls within the 2σ error bars at all measurements,
illustrating that the delay-spectrum approach can be effective
not only in a first-detection scenario, but also for characterizing
21 cm reionization with a next-generation instrument.

6. DISCUSSION

The technique we have presented bears broad similarities to
other approaches described in the literature (Morales & Hewitt
2004; Bowman et al. 2009; Liu & Tegmark 2011) in that it
seeks to exploit spectral smoothness in foreground removal, and
in that it contends with the inherent frequency dependence of
uv-sampling. The technique we have described differs, however,
in its light dependence on synthesis imaging. Instead, the focus
is on foreground removal per-baseline on the basis of spectral
smoothness. While image-domain foreground modeling will
undoubtedly still play an important role in calibration and bright
source removal, we have shown that by using delay-domain
foreground separation, the stringent calibration requirements
required for adequate foreground removal via synthesis imaging
are relaxed into constraints on spectral and spatial smoothness
in instrumental response.

Our approach appears to be quite similar to the indepen-
dently derived approach recently described in Vedantham et al.
(2012), which involves the application of the Chirp Z Trans-
form to interferometric measurements that are gridded in units
of physical length, rather than wavenumber. This approach ef-
fectively yields the delay transform we describe, and we reach
similar conclusions regarding the level of foreground removal
that is possible with the effective use of windowing functions
in the line-of-sight Fourier transformation. An important dis-
tinction between our approach and theirs is our emphasis on
the per-baseline application of this technique. Using the insight
that the transforms described in each paper can be physically
interpreted as yielding the geometric delay in an interferome-
ter pair, we find that imaging is altogether unnecessary for the
effective application of this technique. In fact, one of the signif-
icant advantages of our technique is that data may be retained
in the native gridding produced in the interferometer, thereby
avoiding “gridding contamination,” inter-channel “jitter,” con-
fusion effects, and many of the other complications described
in Vedantham et al. (2012). Furthermore, the independent treat-
ment of each baseline in our approach allows the dependence of
foreground contamination on baseline length to be addressed by
only using shorter baselines to constrain the wavemodes where
longer baselines remain contaminated.

Understanding the relationship between delay space and
k-space also provides a simple interpretation of the foreground
“wedge” described in Datta et al. (2010) and Morales et al.
(2012), and is seen in Figure 10. Foreground emission is
bounded by a maximum delay in delay space, which corresponds
to a maximum k‖ in k-space. The value of this maximum delay
depends on baseline length, with foreground emission extending
to higher k‖-modes on longer baselines. Longer baseline lengths
correspond to higher |k⊥|-modes, creating the linear trend in k‖
versus k⊥ of foreground contamination that is the wedge shape.
Sources near the field edge enter at higher delays, thus mapping
them to higher k‖-modes than sources near field center, as stated
by Morales et al. (2012). The wedge can then be understood,
not as resulting from foreground model errors themselves, but
as an intrinsic shape of foreground emission, the residuals of
which will remain if there is imperfect foreground subtraction.

An important consequence of the viability of foreground
removal on a per-baseline basis is that it allows somewhat
more flexibility in array configuration. Notably, this foreground
removal technique is viable for the maximum-redundancy ar-
ray configurations advocated in P12 that can dramatically en-
hance sensitivity. As shown in Figure 8, the combination of
these techniques opens a substantial window for accessing
k-modes of reionization that are uncorrupted by smooth-
spectrum foregrounds.

A notable foreground component that has not been included
in the discussion in this paper is polarized galactic synchrotron
emission. As has been noted many times in the literature,
linear polarization measurements of emission with high rotation
measure pick up the rapid rotation of polarization angle with
frequency that is of concern for measuring 21 cm reionization
(Furlanetto et al. 2006; Jelić et al. 2008; Pen et al. 2009; Geil
et al. 2011). This is illustrated in the equation for Faraday
rotation of polarization angle

Q + iU = (Qin + iUin)e−iRM λ2
, (13)

where (Qin, Uin) are the intrinsic polarization parameters of a
source and (Q,U) are their observed values. Faraday rotation
effectively modulates otherwise smooth-spectrum synchrotron
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Figure 11. Measured Δ2(k) vs.s k with shaded 2σ error bars for baselines of length 32 (upper-left), 64 (upper-right), 128 (lower-left), and 256 (lower-right) m,
corresponding to 16, 32, 64, and 128 wavelengths, respectively, as measured using the delay-spectrum technique. Error bars include contributions from foregrounds
and from thermal noise, assuming observations with a future array 100 times more sensitive than a 132-antenna PAPER array observing for 200 days. The dark solid
line denotes the true Δ2

21(k) power spectrum used in the simulation.

emission by a rotation measure λ2/2π delay term that can scatter
smooth-spectrum emission beyond the maximum geometric
delay at the horizon that was derived in Section 2.

We are currently exploring how the delay-spectrum technique
can be extended to handle polarized foregrounds. Managing
polarized foregrounds will begin with the careful formation of
the Stokes I polarization parameter, but imperfect polarization
calibration will leave a residual, direction-dependent leakage
of linear polarization into I. In a future publication, we will
explore how the whole-bandwidth delay-domain deconvolution
from Section 3 might be extended to employ rotation measure
synthesis (Brentjens & de Bruyn 2005) to model and remove
polarized foregrounds that add coherently over much wider
bandwidth than the peak 21 cm reionization signal is expected
to occupy.

7. CONCLUSION

The delay-transform methodology we have described applies
separately to each baseline, concentrating smooth-spectrum
foregrounds within the bounds of the maximum geometric
delays for each baseline. The measured signal outside of these
modes is dominated by sidelobes of unsmooth emission on the
sky, such as the predicted 21 cm signature of reionization. The
response of delay modes is peaked toward specific line-of-sight
components of the three-dimensional wavevector k, making
them effective probes of the 21 cm reionization power spectrum.
The primary complication inherent to this approach, relative
to extracting strictly line-of-sight fluctuations with overlapping
uv-coverage generated by larger future arrays, is that extracted
k-modes have non-negligible projections along image-domain
angular coordinates. As a result, confining smooth-spectrum

foregrounds to low k-modes requires that instrumental response
be smooth both spectrally and spatially.

PAPER is unique among current experiments targeting cos-
mic reionization in its pursuit of antenna elements with precisely
these characteristics. As a result, PAPER may be well positioned
to explore and capitalize on this new approach for measuring
the three-dimensional power spectrum of reionization, and to
quantify the need for antenna elements with these character-
istics. Work in this area will likely have repercussions for the
design of future reionization experiments such as the Hydrogen
Epoch of Reionization Array proposed in a white paper to the
Astro2010 Decadal Survey.

PAPER is currently pursing this strategy as its primary
path to detecting reionization with 132 deployed antennas.
PAPER should achieve adequate sensitivity in 200 days of
observation to constrain fluctuations of 30 mK2 at the 3σ
level near k ≈ 0.2 h Mpc−1. Not surprisingly, the crux of
successfully applying delay-spectrum foreground isolation at
these sensitivity levels will be mastering frequency-dependent
instrumental systematics such as reflections, resonances, or
cross-talk in the analog signal path.
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Högbom, J. 1974, A&AS, 15, 417H
Jelić, V., Zaroubi, S., Labropoulos, P., et al. 2008, MNRAS, 389, 1319
Kraus, J., & Carver, K. 1973, Electromagnetics (2nd ed.; New York:

McGraw-Hill), xix, 828
Lidz, A., Zahn, O., McQuinn, M., Zaldarriaga, M., & Hernquist, L. 2008, ApJ,

680, 962
Liu, A., & Tegmark, M. 2011, Phys. Rev. D, 83, 103006
Lonsdale, C., Cappallo, R. J., Morales, M. F., et al. 2009, Proc. IEEE, 97, 1497
McQuinn, M., Lidz, A., Zahn, O., et al. 2007, MNRAS, 377, 1043
Mesinger, A. 2010, MNRAS, 407, 1328
Morales, M. 2005, ApJ, 619, 678
Morales, M., Hazelton, B., Sullivan, I., & Beardsley, A. 2012, ApJ, 752, 137

Morales, M., & Hewitt, J. 2004, ApJ, 615, 7
Morales, M., & Matejek, M. 2009, MNRAS, 400, 1814
Morales, M., & Wyithe, J. 2010, ARA&A, 48, 127
Paciga, G., Chang, T.-C., Gupta, Y., et al. 2011, MNRAS, 413, 1174
Parsons, A., & Backer, D. 2009, AJ, 138, 219
Parsons, A., Backer, D. C., Foster, G. S., et al. 2010, AJ, 139, 1468
Parsons, A., Pober, J., McQuinn, M., Jacobs, D., & Aguirre, J. 2012, ApJ,

753, 81
Pen, U., Chang, T.-C., Hirata, C. M., et al. 2009, MNRAS, 399, 181
Rottgering, H., et al. 2006, arXiv:astro-ph/0610596
Santos, M., Ferramacho, L., Silva, M. B., Amblard, A., & Cooray, A.

2010, MNRAS, 406, 2421
Trac, H., & Cen, R. 2007, ApJ, 671, 1
Vaidyanathan, P. 1990, Proc. IEEE, 78, 56
Vedantham, H., Udaya Shankar, N., & Subrahmanyan, R. 2012, ApJ, 745, 176
Wyithe, J., & Loeb, A. 2004, Nature, 432, 194
Zahn, O., Mesinger, A., McQuinn, M., et al. 2011, MNRAS, 414, 727

15

http://dx.doi.org/10.1088/0004-637X/724/1/526
http://adsabs.harvard.edu/abs/2010ApJ...724..526D
http://adsabs.harvard.edu/abs/2010ApJ...724..526D
http://dx.doi.org/10.1016/j.physrep.2006.08.002
http://adsabs.harvard.edu/abs/2006PhR...433..181F
http://adsabs.harvard.edu/abs/2006PhR...433..181F
http://dx.doi.org/10.1111/j.1365-2966.2011.19509.x
http://adsabs.harvard.edu/abs/2011MNRAS.418..516G
http://adsabs.harvard.edu/abs/2011MNRAS.418..516G
http://dx.doi.org/10.1109/PROC.1978.10837
http://adsabs.harvard.edu/abs/1978IEEEP..66...51H
http://adsabs.harvard.edu/abs/1978IEEEP..66...51H
http://adsabs.harvard.edu/abs/1982A&AS...47....1H
http://adsabs.harvard.edu/abs/1982A&AS...47....1H
http://dx.doi.org/10.1111/j.1365-2966.2008.13634.x
http://adsabs.harvard.edu/abs/2008MNRAS.389.1319J
http://adsabs.harvard.edu/abs/2008MNRAS.389.1319J
http://dx.doi.org/10.1086/587618
http://adsabs.harvard.edu/abs/2008ApJ...680..962L
http://adsabs.harvard.edu/abs/2008ApJ...680..962L
http://dx.doi.org/10.1103/PhysRevD.83.103006
http://adsabs.harvard.edu/abs/2011PhRvD..83j3006L
http://adsabs.harvard.edu/abs/2011PhRvD..83j3006L
http://dx.doi.org/10.1109/JPROC.2009.2017564
http://adsabs.harvard.edu/abs/2009IEEEP..97.1497L
http://adsabs.harvard.edu/abs/2009IEEEP..97.1497L
http://dx.doi.org/10.1111/j.1365-2966.2007.11489.x
http://adsabs.harvard.edu/abs/2007MNRAS.377.1043M
http://adsabs.harvard.edu/abs/2007MNRAS.377.1043M
http://dx.doi.org/10.1111/j.1365-2966.2010.16995.x
http://adsabs.harvard.edu/abs/2010MNRAS.407.1328M
http://adsabs.harvard.edu/abs/2010MNRAS.407.1328M
http://dx.doi.org/10.1086/426730
http://adsabs.harvard.edu/abs/2005ApJ...619..678M
http://adsabs.harvard.edu/abs/2005ApJ...619..678M
http://dx.doi.org/10.1088/0004-637X/752/2/137
http://adsabs.harvard.edu/abs/2012ApJ...752..137M
http://adsabs.harvard.edu/abs/2012ApJ...752..137M
http://dx.doi.org/10.1086/424437
http://adsabs.harvard.edu/abs/2004ApJ...615....7M
http://adsabs.harvard.edu/abs/2004ApJ...615....7M
http://dx.doi.org/10.1111/j.1365-2966.2009.15537.x
http://adsabs.harvard.edu/abs/2009MNRAS.400.1814M
http://adsabs.harvard.edu/abs/2009MNRAS.400.1814M
http://dx.doi.org/10.1146/annurev-astro-081309-130936
http://adsabs.harvard.edu/abs/2010ARA&A..48..127M
http://adsabs.harvard.edu/abs/2010ARA&A..48..127M
http://dx.doi.org/10.1111/j.1365-2966.2011.18208.x
http://adsabs.harvard.edu/abs/2011MNRAS.413.1174P
http://adsabs.harvard.edu/abs/2011MNRAS.413.1174P
http://dx.doi.org/10.1088/0004-6256/138/1/219
http://adsabs.harvard.edu/abs/2009AJ....138..219P
http://adsabs.harvard.edu/abs/2009AJ....138..219P
http://dx.doi.org/10.1088/0004-6256/139/4/1468
http://adsabs.harvard.edu/abs/2010AJ....139.1468P
http://adsabs.harvard.edu/abs/2010AJ....139.1468P
http://dx.doi.org/10.1088/0004-637X/753/1/81
http://adsabs.harvard.edu/abs/2012ApJ...753...81P
http://adsabs.harvard.edu/abs/2012ApJ...753...81P
http://dx.doi.org/10.1111/j.1365-2966.2009.14980.x
http://adsabs.harvard.edu/abs/2009MNRAS.399..181P
http://adsabs.harvard.edu/abs/2009MNRAS.399..181P
http://www.arxiv.org/abs/astro-ph/0610596
http://dx.doi.org/10.1111/j.1365-2966.2010.16898.x
http://adsabs.harvard.edu/abs/2010MNRAS.406.2421S
http://adsabs.harvard.edu/abs/2010MNRAS.406.2421S
http://dx.doi.org/10.1086/522566
http://adsabs.harvard.edu/abs/2007ApJ...671....1T
http://adsabs.harvard.edu/abs/2007ApJ...671....1T
http://dx.doi.org/10.1109/5.52200
http://dx.doi.org/10.1088/0004-637X/745/2/176
http://adsabs.harvard.edu/abs/2012ApJ...745..176V
http://adsabs.harvard.edu/abs/2012ApJ...745..176V
http://dx.doi.org/10.1038/nature03033
http://adsabs.harvard.edu/abs/2004Natur.432..194W
http://adsabs.harvard.edu/abs/2004Natur.432..194W
http://dx.doi.org/10.1111/j.1365-2966.2011.18439.x
http://adsabs.harvard.edu/abs/2011MNRAS.414..727Z
http://adsabs.harvard.edu/abs/2011MNRAS.414..727Z

	1. INTRODUCTION
	2. THE DELAY TRANSFORM
	2.1. A Qualitative Picture of the Delay Transform for 21cm Experiments
	2.2. Mathematical Formalism of the Delay Transform
	2.3. The PSF of τ-modes in k-space
	2.4. Mapping Foregrounds to k-space

	3. IMPLEMENTATION DETAILS
	3.1. Reducing Sidelobes of Foregrounds Arising from Frequency-domain Flagging
	3.2. Gridding and Integration

	4. SIMULATING FOREGROUNDS AND REIONIZATION IN DELAY SPECTRA
	4.1. Model Components

	5. RESULTS
	6. DISCUSSION
	7. CONCLUSION
	REFERENCES

