RADIO ASTRONOMY SES598 DANNY JACOBS ARIZONA STATE UNIVERSITY

# SYNTHESIS IMAGING



# HOW DO WE GET FROM CROSS CORRELATIONS



# TO AN IMAGE?



# THE CROSS CORRELATION MEASURES THIS

 $V_{ij}(\nu,t) = \int_{A_{\pi}} g_i g_j A_i(\hat{s},\nu) I(\hat{s},\nu) A_j(\hat{s},\nu) e^{-i\pi \vec{b}_{ij} \cdot \hat{s} \frac{\nu}{c}} ds^2$ 

# Instrument Gains Direction dependent gain Flux on the sky

# Baseline vector Direction on sky Infinitesimal sky area



# SIMPLIFY

# Assume we can solve for gains somehow Assume our object is near flat part of beam

# Let b/lambda = (u,v,w) and $s = (l,m)^*$

 $V_{ij}(\nu,t) \approx \int_{A_{-}} I(\hat{s},\nu) e^{-i\pi(u_{ij}l+v_{ij}m+w_{ij}\sqrt{1-l^2-m^2})}$ dldm

# \*recall $\hat{s}$ is a unit vector

 $A \rightarrow 1$ 



 $V_{ij}(\nu,t) \approx \int_{A_{\pi}} I(\hat{s},\nu) e^{-i\pi(u_{ij}l_{\gamma})}$ 

 $V_{ij}(\nu,t) = \int_{A^-} I(\hat{s},\nu) e^{-i\pi(u_{ij}l+v_{ij}m)} dl dm$ 

In the convolution theorem

 $V_{ij} = \tilde{I}((u, v)) \cdot \delta(u - u_{ij}, v - v_{ij})$ the FT of the true sky times deltas at the baselines

$$+v_{ij}m+w_{ij}\sqrt{1-l^2-m^2})\frac{dldm}{\sqrt{1-l^2-m^2}}$$

# If wis small and I,m are small

# The Fourier Transform!



# EACH BASELINE MAPS TO A MODE IN UV SPACE







# Suppose we a 1Jy src at $\hat{s} \cdot \vec{b} = 1$





# 1. Grid $V_{ij}$ 2. Fourier Tranform



And the second s



The Point Spread Function



# The "True" sky

 $I(\hat{s}, \nu)$ 

# The interferometer measures \_this\_

# The "True" Fourier sky

$$F^{-1}$$

 $ilde{I}((u,v),
u)$ 



# F(sky \* fringe modes)

 $V_{ij}(\nu,t) = \int I(\hat{s},\nu)e^{-i\pi(u_{ij}l+v_{ij}m)}dldm$ 



 $V(u_{ij}, v_{ij})$ 

# F^-1(sky) \* Fringe deltas



# The "True" sky





# The "True" Fourier sky



F

# X aperture function



UU (lamboa)



# CLEAN = USE WHAT WE KNOW TO MAKE ANINFORMED GUESS ABOUT THE TRUE SKY IE solve the inverse problem. But Which one!? Our rough model

$$V_{ij}(\nu,t) = \int_{4\pi} I(\hat{s},t)$$

# A slightly more accurate one

 $V_{ij}(\nu,t) \approx \int_{-\infty} I(\hat{s},\nu) e^{-i\pi(u_{ij}l+v_i)}$ 

 $\nu)e^{-i\pi(u_{ij}l+v_{ij}m)}dldm$ 

$$(i_{j}m + w_{ij}\sqrt{1 - l^2 - m^2}) \frac{dldm}{\sqrt{1 - l^2 - m^2}}$$





1. 2. Add fraction of that flux to model.

# TYPES OF CLEAN

$$V_{ij}(\nu,t) = \int_{4\pi} I(\hat{s},\nu) e^{-i\pi(u_{ij}l+v_{ij}m)} dl dm$$

Högbom

Entirely in image plane Assumes PSF is constant across image i.e. w=0, flat sky

### Other variants:

- **Bayesian reconstruction**
- Maximum Entropy
- w projection
- Multiscale
- aw projection

Cotton-schwab

 $I(\hat{s},\nu)e^{-i\pi(u_{ij}l+v_{ij}m+w_{ij}\sqrt{1-l^2-m^2})}$ dldm $V_{ij}(\nu,t) \approx$  $\sqrt{1-l^2-m^2}$ 

Runs full forward model Slow as molasses (relatively speaking, mostly fine these days) The default is usually to combine the two

COTTON-SCHWAB

### HÖGBOM

MINOR CYCLE

MAJOR CYCLE



# CLEAN CAN BE ABUSED!



Guess that the object is in the inner half of the beam

each pixel is a "clean model component"

## **Resulting Model**

# SKR G55 10s.1 hr.d ean.model iraster $21^{m}20^{\circ}$ 20<sup>m</sup>40° $00^{\circ}$ J2000 Right Ascension

# Gaussian PSF Model



Gaussian fit to PSF aka "restoring beam"



# CLEAN USES YOUR PRIORS



11 L. + all frequencies

# + all trequencies



# MORE MODES = MORE MEASUREMENTS \*WITH SOME BIG ASSUMPTIONS

Assuming constant in frequency

# one integration





### Assuming constant in time



Baseline rotation relative to the fixed stars

# Multi-frequency



# All combined











