

CLASS GOALS

- Conversational in breadth of radio astronomical applications
- Technical Competency in radio astronomy data analysis
- Understanding of astrophysical processes causing radio emission
- Work with real radio data from JVLA, ALMA, and our own instrument.
- Know some history.

RADIO DATA ARE A LITTLE TRICKIER THAN OTHER ASTRONOMY MODES

CLASS SETUP

- Students: Graduate and Senior Undergraduates
- Assumed Background: Physics Degree + Basic astronomy
- Space: ISTB4 492
- Time: MW 1:30-2:50
- Class Details: danielcjacobs.com/edu/raclass/

COURSE OUTLINE

- The Wonderful World of Wadio
- The Why of the Radio Sky
 Emission mechanisms and wave propagation
- Receivers
- Antennas
- Interferometers
- Imaging
- Tricky Techniques to Track Transients

COURSE BUSINESS

- Two main class components
 - 1) the relevant tools from math, physics, astronomy
 - Traditional lectures + homework in WRH
 - 2) projects
- Materials posted on danielcjacobs.com/edu/raclass/ Lecture slides, recordings
- All homework problems in handwriting due Monday in class

GRADING

- Cumulative point system
- Grade = points awarded / total assigned
- With extra credit this can be > 100%
- Final letter grade awarded according to this scale.
- Default values (unless otherwise specified):
 - Assignments: 1pt/question
 - Tests: 5pts/question
 - Projects: 10pts/milestone
 - I will attempt to balance these so no part becomes pointless
 - Estimated course point total: 150 +/- 25

<u>A ></u>95%

B > 85%

C > 75%

<u>D ></u>50%

F

Puts habitability of nearby system into question

NATIONAL RADIO ASTRONOMY OBSERVATORY

Data Project: Detect a flare at Prox. Cen

Analyze the archive ALMA data.

One of the authors rates this analysis: hard, but

not unreasonable

Instrument Project Rooftop 21cm Horn

Build a more robust version of this instrument.

We have a steel horn and lots of SDRs.

Goal: map the rotation curve of the galaxy.

CLASS WORK

- Homework from Tools. Due next Monday occurring after a weeks time has elapsed.
- Class projects
 Documentation of incremental progress.

 Teamwork encouraged, but your contribution must be clearly identified.
- First month: Background physics, instrument principles. Homework
- Second month: Radiation and synthesis imaging. Synthesis tutorials and ALMA project
- Third month: Spectral lines, pulsars. Start 21cm project
- Fourth Month: Other cool objects, finish 21cm project. Extra credit.
- Final oral reports last week of class, written report due on final date.

THE HIGH FREQUENCY EDGE

WATER 22.2 GHz, 183Ghz O2 60GHz, 119GHz

HIGH AND DRY SITES

THE LOW END

IONOSPHERE WEATHER MATTERS A LOT

lower cutoff frequency depends on density (n₀)

Daytime ~11MHz Night time ~ 4.5 MHz

Denser in the sun!

Refraction at 500MHz

RADIO FREQUENCY INTERFERENCE

INTERFERENCE IS NOT NEW!

NEXT TIME

- AGN
- Galaxies
- Pulsars
- Supernovae
- CMB
- The Sun
- Abundances

HOMEWORK

- For next Monday, read and comment on.
- Anglada et al 2017
 ui.adsabs.harvard.edu/abs/2017ApJ...850L...6A/
- Macgregor et al 2018 ui.adsabs.harvard.edu/abs/2018ApJ...855L...2M/
- Topics: Planet formation and Space Weather